IDEAS home Printed from https://ideas.repec.org/p/ira/wpaper/202411.html
   My bibliography  Save this paper

Difference-in-Difference models to estimate causal effects on auto insurers behavior

Author

Listed:
  • Catalina Bolancé

    (Department of Econometrics Riskcenter-IREA, Universitat de Barcelona, Spain.)

  • Montserrat Guillen

    (Department of Econometrics Riskcenter-IREA, Universitat de Barcelona, Spain.)

  • Ana M. Pérez-Marín

    (Department of Econometrics Riskcenter-IREA, Universitat de Barcelona, Spain.)

  • Anna-Patrícia Orteu

    (Department of Econometrics Riskcenter-IREA, Universitat de Barcelona, Spain.)

Abstract

The Difference-in-Difference (DiD) method is useful to test if an event has effects in a given outcome using non-experimental data. Based on DiD method, we propose alternative panel models to estimate the causal effects of the traffic accidents on driving behavior patterns: the total annual driving distance in km, the percent of km circulated above the speed limits, in urban areas and at night. We use a data set provided by an ”insurtech” company that uses car sensors to measure driving data over a period of three years. The estimation results show as the causal effects of accidents are different if we consider frequency of accidents, type of damages and whose fault is the accident. Furthermore, different profiles of policyholders in function of drivers and cars characteristics are associated with specific causal effects.

Suggested Citation

  • Catalina Bolancé & Montserrat Guillen & Ana M. Pérez-Marín & Anna-Patrícia Orteu, 2024. "Difference-in-Difference models to estimate causal effects on auto insurers behavior," IREA Working Papers 202411, University of Barcelona, Research Institute of Applied Economics, revised Feb 2024.
  • Handle: RePEc:ira:wpaper:202411
    as

    Download full text from publisher

    File URL: http://www.ub.edu/irea/working_papers/2024/202411.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2018. "Unravelling the predictive power of telematics data in car insurance pricing," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1275-1304, November.
    2. Sebastian Galiani & Paul Gertler & Ernesto Schargrodsky, 2005. "Water for Life: The Impact of the Privatization of Water Services on Child Mortality," Journal of Political Economy, University of Chicago Press, vol. 113(1), pages 83-120, February.
    3. Guillen, Montserrat & Bermúdez, Lluís & Pitarque, Albert, 2021. "Joint generalized quantile and conditional tail expectation regression for insurance risk analysis," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 1-8.
    4. Albert Pitarque & Montserrat Guillen, 2022. "Interpolation of Quantile Regression to Estimate Driver’s Risk of Traffic Accident Based on Excess Speed," Risks, MDPI, vol. 10(1), pages 1-13, January.
    5. Martin Eling & Mirko Kraft, 2020. "The impact of telematics on the insurability of risks," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 21(2), pages 77-109, April.
    6. Jean-Philippe Boucher & Roxane Turcotte, 2020. "A Longitudinal Analysis of the Impact of Distance Driven on the Probability of Car Accidents," Risks, MDPI, vol. 8(3), pages 1-19, September.
    7. Alberto Abadie, 2005. "Semiparametric Difference-in-Differences Estimators," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(1), pages 1-19.
    8. Mercedes Ayuso & Montserrat Guillen & Ana María Pérez-Marín, 2016. "Telematics and Gender Discrimination: Some Usage-Based Evidence on Whether Men’s Risk of Accidents Differs from Women’s," Risks, MDPI, vol. 4(2), pages 1-10, April.
    9. Catalina Bolancé & Montserrat Guillen & Albert Pitarque, 2020. "A Sarmanov Distribution with Beta Marginals: An Application to Motor Insurance Pricing," Mathematics, MDPI, vol. 8(11), pages 1-11, November.
    10. Denuit, Michel & Guillen, Montserrat & Trufin, Julien, 2019. "Multivariate credibility modelling for usage-based motor insurance pricing with behavioural data," Annals of Actuarial Science, Cambridge University Press, vol. 13(2), pages 378-399, September.
    11. Jan Reig Torra & Montserrat Guillen & Ana M. Pérez-Marín & Lorena Rey Gámez & Giselle Aguer, 2023. "Weather Conditions and Telematics Panel Data in Monthly Motor Insurance Claim Frequency Models," Risks, MDPI, vol. 11(3), pages 1-18, March.
    12. Mercedes Ayuso & Montserrat Guillen & Jens Perch Nielsen, 2019. "Improving automobile insurance ratemaking using telematics: incorporating mileage and driver behaviour data," Transportation, Springer, vol. 46(3), pages 735-752, June.
    13. Jennifer S. K. Chan & S. T. Boris Choy & Udi Makov & Ariel Shamir & Vered Shapovalov, 2022. "Variable Selection Algorithm for a Mixture of Poisson Regression for Handling Overdispersion in Claims Frequency Modeling Using Telematics Car Driving Data," Risks, MDPI, vol. 10(4), pages 1-10, April.
    14. Denuit, Michel & Guillen, Montserrat & Trufin, Julien, 2019. "Multivariate credibility modelling for usage-based motor insurance pricing with behavioural data," LIDAM Reprints ISBA 2019039, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Susan Athey & Guido W. Imbens, 2006. "Identification and Inference in Nonlinear Difference-in-Differences Models," Econometrica, Econometric Society, vol. 74(2), pages 431-497, March.
    16. Jean‐Philippe Boucher & Michel Denuit & Montserrat Guillen, 2009. "Number of Accidents or Number of Claims? An Approach with Zero‐Inflated Poisson Models for Panel Data," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 76(4), pages 821-846, December.
    17. Jiang Cheng & Frank Y. Feng & Xudong Zeng, 2023. "Pay-As-You-Drive Insurance: Modeling and Implications," North American Actuarial Journal, Taylor & Francis Journals, vol. 27(2), pages 303-321, April.
    18. Lemaire, Jean & Park, Sojung Carol & Wang, Kili C., 2016. "The Use Of Annual Mileage As A Rating Variable," ASTIN Bulletin, Cambridge University Press, vol. 46(1), pages 39-69, January.
    19. Francis Duval & Jean-Philippe Boucher & Mathieu Pigeon, 2022. "How Much Telematics Information Do Insurers Need for Claim Classification?," North American Actuarial Journal, Taylor & Francis Journals, vol. 26(4), pages 570-590, November.
    20. Montserrat Guillen & Jens Perch Nielsen & Ana M. Pérez-Marín & Valandis Elpidorou, 2020. "Can Automobile Insurance Telematics Predict the Risk of Near-Miss Events?," North American Actuarial Journal, Taylor & Francis Journals, vol. 24(1), pages 141-152, January.
    21. Montserrat Guillen & Jens Perch Nielsen & Mercedes Ayuso & Ana M. Pérez‐Marín, 2019. "The Use of Telematics Devices to Improve Automobile Insurance Rates," Risk Analysis, John Wiley & Sons, vol. 39(3), pages 662-672, March.
    22. Duval, Francis & Boucher, Jean-Philippe & Pigeon, Mathieu, 2024. "Telematics combined actuarial neural networks for cross-sectional and longitudinal claim count data," ASTIN Bulletin, Cambridge University Press, vol. 54(2), pages 239-262, May.
    23. Montserrat Guillen & Jens Perch Nielsen & Ana M. Pérez‐Marín, 2021. "Near‐miss telematics in motor insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(3), pages 569-589, September.
    24. Henckaerts, Roel & Antonio, Katrien, 2022. "The added value of dynamically updating motor insurance prices with telematics collected driving behavior data," Insurance: Mathematics and Economics, Elsevier, vol. 105(C), pages 79-95.
    25. Roth, Jonathan & Sant’Anna, Pedro H.C. & Bilinski, Alyssa & Poe, John, 2023. "What’s trending in difference-in-differences? A synthesis of the recent econometrics literature," Journal of Econometrics, Elsevier, vol. 235(2), pages 2218-2244.
    26. Jean-Philippe Boucher & Steven Côté & Montserrat Guillen, 2017. "Exposure as Duration and Distance in Telematics Motor Insurance Using Generalized Additive Models," Risks, MDPI, vol. 5(4), pages 1-23, September.
    27. Rafael Di Tella & Ernesto Schargrodsky, 2004. "Do Police Reduce Crime? Estimates Using the Allocation of Police Forces After a Terrorist Attack," American Economic Review, American Economic Association, vol. 94(1), pages 115-133, March.
    28. Meng, Shengwang & Wang, He & Shi, Yanlin & Gao, Guangyuan, 2022. "Improving Automobile Insurance Claims Frequency Prediction With Telematics Car Driving Data," ASTIN Bulletin, Cambridge University Press, vol. 52(2), pages 363-391, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Montserrat Guillen & Jens Perch Nielsen & Ana M. Pérez‐Marín, 2021. "Near‐miss telematics in motor insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(3), pages 569-589, September.
    2. Francis Duval & Jean‐Philippe Boucher & Mathieu Pigeon, 2023. "Enhancing claim classification with feature extraction from anomaly‐detection‐derived routine and peculiarity profiles," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 90(2), pages 421-458, June.
    3. Simon, Pierre-Alexandre & Trufin, Julien & Denuit, Michel, 2023. "Bivariate Poisson credibility model and bonus-malus scale for claim and near-claim events," LIDAM Discussion Papers ISBA 2023014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Gao, Guangyuan & Wüthrich, Mario V. & Yang, Hanfang, 2019. "Evaluation of driving risk at different speeds," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 108-119.
    5. Zhiyu Quan & Changyue Hu & Panyi Dong & Emiliano A. Valdez, 2024. "Improving Business Insurance Loss Models by Leveraging InsurTech Innovation," Papers 2401.16723, arXiv.org.
    6. Jean-Philippe Boucher & Roxane Turcotte, 2020. "A Longitudinal Analysis of the Impact of Distance Driven on the Probability of Car Accidents," Risks, MDPI, vol. 8(3), pages 1-19, September.
    7. Omid Ghaffarpasand & Mark Burke & Louisa K. Osei & Helen Ursell & Sam Chapman & Francis D. Pope, 2022. "Vehicle Telematics for Safer, Cleaner and More Sustainable Urban Transport: A Review," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    8. Montserrat Guillen & Ana M. Pérez-Marín & Mercedes Ayuso & Jens Perch Nielsen, 2018. "“Exposure to risk increases the excess of zero accident claims frequency in automobile insurance”," IREA Working Papers 201810, University of Barcelona, Research Institute of Applied Economics, revised May 2018.
    9. Meng, Shengwang & Gao, Yaqian & Huang, Yifan, 2022. "Actuarial intelligence in auto insurance: Claim frequency modeling with driving behavior features and improved boosted trees," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 115-127.
    10. Banghee So & Jean-Philippe Boucher & Emiliano A. Valdez, 2021. "Synthetic Dataset Generation of Driver Telematics," Risks, MDPI, vol. 9(4), pages 1-19, March.
    11. Vikas Chauhan & Rohit Joshi & Vipin Choudhary, 2024. "Understanding intention to adopt telematics-based automobile insurance in an emerging economy: a mixed-method approach," Journal of Financial Services Marketing, Palgrave Macmillan, vol. 29(3), pages 1017-1036, September.
    12. Jiamin Yu, 2022. "Will claim history become a deprecated rating factor? An optimal design method for the real-time road risk model," Papers 2204.11585, arXiv.org.
    13. Ramon Alemany & Catalina Bolancé & Roberto Rodrigo & Raluca Vernic, 2020. "Bivariate Mixed Poisson and Normal Generalised Linear Models with Sarmanov Dependence—An Application to Model Claim Frequency and Optimal Transformed Average Severity," Mathematics, MDPI, vol. 9(1), pages 1-18, December.
    14. Alfiero, Simona & Battisti, Enrico & Ηadjielias, Elias, 2022. "Black box technology, usage-based insurance, and prediction of purchase behavior: Evidence from the auto insurance sector," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    15. Nemanja Milanović & Miloš Milosavljević & Slađana Benković & Dušan Starčević & Željko Spasenić, 2020. "An Acceptance Approach for Novel Technologies in Car Insurance," Sustainability, MDPI, vol. 12(24), pages 1-15, December.
    16. Guillen, Montserrat & Bermúdez, Lluís & Pitarque, Albert, 2021. "Joint generalized quantile and conditional tail expectation regression for insurance risk analysis," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 1-8.
    17. Mark Kattenberg & Bas Scheer & Jurre Thiel, 2023. "Causal forests with fixed effects for treatment effect heterogeneity in difference-in-differences," CPB Discussion Paper 452, CPB Netherlands Bureau for Economic Policy Analysis.
    18. Tzougas, George & Makariou, Despoina, 2022. "The multivariate Poisson-Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters," LSE Research Online Documents on Economics 117197, London School of Economics and Political Science, LSE Library.
    19. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    20. Diego Zappa & Gian Paolo Clemente & Francesco Della Corte & Nino Savelli, 2023. "Editorial on the Special Issue on Insurance: complexity, risks and its connection with social sciences," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(2), pages 125-130, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • C21 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Cross-Sectional Models; Spatial Models; Treatment Effect Models
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ira:wpaper:202411. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alicia García (email available below). General contact details of provider: https://edirc.repec.org/data/feubaes.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.