IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v106y2022icp115-127.html
   My bibliography  Save this article

Actuarial intelligence in auto insurance: Claim frequency modeling with driving behavior features and improved boosted trees

Author

Listed:
  • Meng, Shengwang
  • Gao, Yaqian
  • Huang, Yifan

Abstract

Usage-based insurance (UBI) is now a sought-after auto insurance product in the market. By using a wide range of telematics data, insurance companies can better understand the insured's driving behavior and capture the relationship between insurance loss and the relevant risk factors. This study examines the frequency of UBI claims and combines machine learning algorithms with classic actuarial distributions to establish the predictive model. More specifically, considering the large number of driving behavior features and their complex interactions, we replace generalized linear models with boosted trees, and synchronously update the estimation results of the zero-inflation probability and mean parameter under a zero-inflated Poisson or zero-inflated negative binomial assumption. We further discuss the role of regularization terms and “dropout” in dual-parameter boosted trees, and propose a general framework for insurance claim frequency modeling, which shows high prediction accuracy on both UBI and French motor third-party liability datasets, as well as the interpretability. The potential of extensive driving behavior features has been further verified on a Chinese insurance dataset, and the factors that have a significant impact on vehicle risk are identified and quantified on this basis. In addition, we discuss in detail the key points of applying boosted trees in actuarial science, which also promotes predictive insurance analytics.

Suggested Citation

  • Meng, Shengwang & Gao, Yaqian & Huang, Yifan, 2022. "Actuarial intelligence in auto insurance: Claim frequency modeling with driving behavior features and improved boosted trees," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 115-127.
  • Handle: RePEc:eee:insuma:v:106:y:2022:i:c:p:115-127
    DOI: 10.1016/j.insmatheco.2022.06.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668722000695
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2022.06.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roel Verbelen & Katrien Antonio & Gerda Claeskens, 2018. "Unravelling the predictive power of telematics data in car insurance pricing," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(5), pages 1275-1304, November.
    2. Jean-Philippe Boucher & Steven Côté & Montserrat Guillen, 2017. "Exposure as Duration and Distance in Telematics Motor Insurance Using Generalized Additive Models," Risks, MDPI, vol. 5(4), pages 1-23, September.
    3. repec:cup:astinb:v:49:y:2019:i:01:p:1-3_00 is not listed on IDEAS
    4. Mercedes Ayuso & Montserrat Guillen & Jens Perch Nielsen, 2019. "Improving automobile insurance ratemaking using telematics: incorporating mileage and driver behaviour data," Transportation, Springer, vol. 46(3), pages 735-752, June.
    5. Ma, Yu-Luen & Zhu, Xiaoyu & Hu, Xianbiao & Chiu, Yi-Chang, 2018. "The use of context-sensitive insurance telematics data in auto insurance rate making," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 243-258.
    6. Weidner, Wiltrud & Transchel, Fabian W.G. & Weidner, Robert, 2017. "Telematic driving profile classification in car insurance pricing," Annals of Actuarial Science, Cambridge University Press, vol. 11(2), pages 213-236, September.
    7. Bian, Yiyang & Yang, Chen & Zhao, J. Leon & Liang, Liang, 2018. "Good drivers pay less: A study of usage-based vehicle insurance models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 107(C), pages 20-34.
    8. Edward W. (Jed) Frees & Glenn Meyers & A. David Cummings, 2014. "Insurance Ratemaking and a Gini Index," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 81(2), pages 335-366, June.
    9. Jessica Pesantez-Narvaez & Montserrat Guillen & Manuela Alcañiz, 2019. "Predicting Motor Insurance Claims Using Telematics Data—XGBoost versus Logistic Regression," Risks, MDPI, vol. 7(2), pages 1-16, June.
    10. Paefgen, Johannes & Staake, Thorsten & Fleisch, Elgar, 2014. "Multivariate exposure modeling of accident risk: Insights from Pay-as-you-drive insurance data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 27-40.
    11. Lemaire, Jean & Park, Sojung Carol & Wang, Kili C., 2016. "The Use Of Annual Mileage As A Rating Variable," ASTIN Bulletin, Cambridge University Press, vol. 46(1), pages 39-69, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaojun Zhang & Lanpeng Ji & Georgios Aivaliotis & Charles Taylor, 2023. "Bayesian CART models for insurance claims frequency," Papers 2303.01923, arXiv.org, revised Dec 2023.
    2. Carina Clemente & Gracinda R. Guerreiro & Jorge M. Bravo, 2023. "Modelling Motor Insurance Claim Frequency and Severity Using Gradient Boosting," Risks, MDPI, vol. 11(9), pages 1-20, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francis Duval & Jean‐Philippe Boucher & Mathieu Pigeon, 2023. "Enhancing claim classification with feature extraction from anomaly‐detection‐derived routine and peculiarity profiles," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 90(2), pages 421-458, June.
    2. Omid Ghaffarpasand & Mark Burke & Louisa K. Osei & Helen Ursell & Sam Chapman & Francis D. Pope, 2022. "Vehicle Telematics for Safer, Cleaner and More Sustainable Urban Transport: A Review," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
    3. Zhiyu Quan & Changyue Hu & Panyi Dong & Emiliano A. Valdez, 2024. "Improving Business Insurance Loss Models by Leveraging InsurTech Innovation," Papers 2401.16723, arXiv.org.
    4. Donatella Porrini & Giulio Fusco & Cosimo Magazzino, 2020. "Black boxes and market efficiency: the effect on premiums in the Italian motor-vehicle insurance market," European Journal of Law and Economics, Springer, vol. 49(3), pages 455-472, June.
    5. Jean-Philippe Boucher & Roxane Turcotte, 2020. "A Longitudinal Analysis of the Impact of Distance Driven on the Probability of Car Accidents," Risks, MDPI, vol. 8(3), pages 1-19, September.
    6. Guangyuan Gao & Mario V. Wüthrich, 2019. "Convolutional Neural Network Classification of Telematics Car Driving Data," Risks, MDPI, vol. 7(1), pages 1-18, January.
    7. Alfiero, Simona & Battisti, Enrico & Ηadjielias, Elias, 2022. "Black box technology, usage-based insurance, and prediction of purchase behavior: Evidence from the auto insurance sector," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    8. Etye Steinberg, 2022. "Run for Your Life: The Ethics of Behavioral Tracking in Insurance," Journal of Business Ethics, Springer, vol. 179(3), pages 665-682, September.
    9. Montserrat Guillen & Jens Perch Nielsen & Ana M. Pérez‐Marín, 2021. "Near‐miss telematics in motor insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(3), pages 569-589, September.
    10. Gao, Guangyuan & Wüthrich, Mario V. & Yang, Hanfang, 2019. "Evaluation of driving risk at different speeds," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 108-119.
    11. Jiamin Yu, 2022. "Will claim history become a deprecated rating factor? An optimal design method for the real-time road risk model," Papers 2204.11585, arXiv.org.
    12. Shengkun Xie, 2021. "Improving Explainability of Major Risk Factors in Artificial Neural Networks for Auto Insurance Rate Regulation," Risks, MDPI, vol. 9(7), pages 1-21, July.
    13. Deprez, Laurens & Antonio, Katrien & Boute, Robert, 2021. "Pricing service maintenance contracts using predictive analytics," European Journal of Operational Research, Elsevier, vol. 290(2), pages 530-545.
    14. Ma, Yu-Luen & Zhu, Xiaoyu & Hu, Xianbiao & Chiu, Yi-Chang, 2018. "The use of context-sensitive insurance telematics data in auto insurance rate making," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 243-258.
    15. Denuit, Michel & Guillen, Montserrat & Trufin, Julien, 2018. "Multivariate credibility modeling for usage-based motor insurance pricing with behavioral data," LIDAM Discussion Papers ISBA 2018032, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    16. Mercedes Ayuso & Montserrat Guillen & Jens Perch Nielsen, 2019. "Improving automobile insurance ratemaking using telematics: incorporating mileage and driver behaviour data," Transportation, Springer, vol. 46(3), pages 735-752, June.
    17. Marjan Qazvini, 2019. "On the Validation of Claims with Excess Zeros in Liability Insurance: A Comparative Study," Risks, MDPI, vol. 7(3), pages 1-17, June.
    18. Jennifer S. K. Chan & S. T. Boris Choy & Udi Makov & Ariel Shamir & Vered Shapovalov, 2022. "Variable Selection Algorithm for a Mixture of Poisson Regression for Handling Overdispersion in Claims Frequency Modeling Using Telematics Car Driving Data," Risks, MDPI, vol. 10(4), pages 1-10, April.
    19. Christopher Blier-Wong & Hélène Cossette & Luc Lamontagne & Etienne Marceau, 2020. "Machine Learning in P&C Insurance: A Review for Pricing and Reserving," Risks, MDPI, vol. 9(1), pages 1-26, December.
    20. Deprez, Laurens & Antonio, Katrien & Boute, Robert, 2023. "Empirical risk assessment of maintenance costs under full-service contracts," European Journal of Operational Research, Elsevier, vol. 304(2), pages 476-493.

    More about this item

    Keywords

    Usage-based insurance; Driving behavior features; Boosted trees; Zero-inflated distribution; Predictive insurance analytics;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:106:y:2022:i:c:p:115-127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.