IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i24p16386-d996587.html
   My bibliography  Save this article

Vehicle Telematics for Safer, Cleaner and More Sustainable Urban Transport: A Review

Author

Listed:
  • Omid Ghaffarpasand

    (School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK)

  • Mark Burke

    (The Floow Ltd., Sheffield S3 8HQ, UK)

  • Louisa K. Osei

    (School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK)

  • Helen Ursell

    (Transport for West Midlands, Birmingham B19 3TR, UK)

  • Sam Chapman

    (The Floow Ltd., Sheffield S3 8HQ, UK)

  • Francis D. Pope

    (School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK)

Abstract

Urban transport contributes more than a quarter of the global greenhouse gas emissionns that drive climate change; it also produces significant air pollution emissions. Furthermore, vehicle collisions kill and seriously injure 1.35 and 60 million people worldwide, respectively, each year. This paper reviews how vehicle telematics can contribute towards safer, cleaner and more sustainable urban transport. Collection methods are reviewed with a focus on technical challenges, including data processing, storage and privacy concerns. We review how vehicle telematics can be used to estimate transport variables, such as traffic flow speed, driving characteristics, fuel consumption and exhaustive and non-exhaustive emissions. The roles of telematics in the development of intelligent transportation systems (ITSs), optimised routing services, safer road networks and fairer insurance premia estimation are highlighted. Finally, we outline the potential for telematics to facilitate new-to-market urban mobility technologies, signalised intersections, vehicle-to-vehicle (V2V) communication networks and other internet-of-things (IoT) and internet-of-vehicles (IoV) technologies.

Suggested Citation

  • Omid Ghaffarpasand & Mark Burke & Louisa K. Osei & Helen Ursell & Sam Chapman & Francis D. Pope, 2022. "Vehicle Telematics for Safer, Cleaner and More Sustainable Urban Transport: A Review," Sustainability, MDPI, vol. 14(24), pages 1-20, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16386-:d:996587
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/24/16386/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/24/16386/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hsu, Chia-Yu & Yang, Chin-Sheng & Yu, Liang-Chih & Lin, Chi-Fang & Yao, Hsiu-Hsen & Chen, Duan-Yu & Robert Lai, K. & Chang, Pei-Chann, 2015. "Development of a cloud-based service framework for energy conservation in a sustainable intelligent transportation system," International Journal of Production Economics, Elsevier, vol. 164(C), pages 454-461.
    2. Denuit, Michel & Guillen, Montserrat & Trufin, Julien, 2019. "Multivariate credibility modelling for usage-based motor insurance pricing with behavioural data," LIDAM Reprints ISBA 2019039, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    3. Dionne, Georges & Michaud, Pierre-Carl & Pinquet, Jean, 2013. "A review of recent theoretical and empirical analyses of asymmetric information in road safety and automobile insurance," Research in Transportation Economics, Elsevier, vol. 43(1), pages 85-97.
    4. Jean-Philippe Boucher & Steven Côté & Montserrat Guillen, 2017. "Exposure as Duration and Distance in Telematics Motor Insurance Using Generalized Additive Models," Risks, MDPI, vol. 5(4), pages 1-23, September.
    5. Denuit, Michel & Guillen, Montserrat & Trufin, Julien, 2019. "Multivariate credibility modelling for usage-based motor insurance pricing with behavioural data," Annals of Actuarial Science, Cambridge University Press, vol. 13(2), pages 378-399, September.
    6. Mercedes Ayuso & Montserrat Guillen & Jens Perch Nielsen, 2019. "Improving automobile insurance ratemaking using telematics: incorporating mileage and driver behaviour data," Transportation, Springer, vol. 46(3), pages 735-752, June.
    7. David Moher & Alessandro Liberati & Jennifer Tetzlaff & Douglas G Altman & The PRISMA Group, 2009. "Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement," PLOS Medicine, Public Library of Science, vol. 6(7), pages 1-6, July.
    8. Bas, Javier & Zofío, José L. & Cirillo, Cinzia & Chen, Hao & Rakha, Hesham A., 2022. "Policy and industry implications of the potential market penetration of electric vehicles with eco-cooperative adaptive cruise control," Transportation Research Part A: Policy and Practice, Elsevier, vol. 164(C), pages 242-256.
    9. Ma, Yu-Luen & Zhu, Xiaoyu & Hu, Xianbiao & Chiu, Yi-Chang, 2018. "The use of context-sensitive insurance telematics data in auto insurance rate making," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 243-258.
    10. Ewa Stawiarska & Paweł Sobczak, 2018. "The Impact of Intelligent Transportation System Implementations on the Sustainable Growth of Passenger Transport in EU Regions," Sustainability, MDPI, vol. 10(5), pages 1-32, April.
    11. Bian, Yiyang & Yang, Chen & Zhao, J. Leon & Liang, Liang, 2018. "Good drivers pay less: A study of usage-based vehicle insurance models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 107(C), pages 20-34.
    12. Paefgen, Johannes & Staake, Thorsten & Fleisch, Elgar, 2014. "Multivariate exposure modeling of accident risk: Insights from Pay-as-you-drive insurance data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 27-40.
    13. Montserrat Guillen & Jens Perch Nielsen & Mercedes Ayuso & Ana M. Pérez‐Marín, 2019. "The Use of Telematics Devices to Improve Automobile Insurance Rates," Risk Analysis, John Wiley & Sons, vol. 39(3), pages 662-672, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Montserrat Guillen & Jens Perch Nielsen & Ana M. Pérez‐Marín, 2021. "Near‐miss telematics in motor insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(3), pages 569-589, September.
    2. Meng, Shengwang & Gao, Yaqian & Huang, Yifan, 2022. "Actuarial intelligence in auto insurance: Claim frequency modeling with driving behavior features and improved boosted trees," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 115-127.
    3. Gao, Guangyuan & Wüthrich, Mario V. & Yang, Hanfang, 2019. "Evaluation of driving risk at different speeds," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 108-119.
    4. Francis Duval & Jean‐Philippe Boucher & Mathieu Pigeon, 2023. "Enhancing claim classification with feature extraction from anomaly‐detection‐derived routine and peculiarity profiles," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 90(2), pages 421-458, June.
    5. Simon, Pierre-Alexandre & Trufin, Julien & Denuit, Michel, 2023. "Bivariate Poisson credibility model and bonus-malus scale for claim and near-claim events," LIDAM Discussion Papers ISBA 2023014, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    6. Jiamin Yu, 2022. "Will claim history become a deprecated rating factor? An optimal design method for the real-time road risk model," Papers 2204.11585, arXiv.org.
    7. Jean-Philippe Boucher & Roxane Turcotte, 2020. "A Longitudinal Analysis of the Impact of Distance Driven on the Probability of Car Accidents," Risks, MDPI, vol. 8(3), pages 1-19, September.
    8. Donatella Porrini & Giulio Fusco & Cosimo Magazzino, 2020. "Black boxes and market efficiency: the effect on premiums in the Italian motor-vehicle insurance market," European Journal of Law and Economics, Springer, vol. 49(3), pages 455-472, June.
    9. Dhiti Osatakul & Xueyuan Wu, 2021. "Discrete-Time Risk Models with Claim Correlated Premiums in a Markovian Environment," Risks, MDPI, vol. 9(1), pages 1-23, January.
    10. Ramon Alemany & Catalina Bolancé & Roberto Rodrigo & Raluca Vernic, 2020. "Bivariate Mixed Poisson and Normal Generalised Linear Models with Sarmanov Dependence—An Application to Model Claim Frequency and Optimal Transformed Average Severity," Mathematics, MDPI, vol. 9(1), pages 1-18, December.
    11. Chen, Zezhun & Dassios, Angelos & Tzougas, George, 2022. "EM estimation for the bivariate mixed exponential regression model," LSE Research Online Documents on Economics 115132, London School of Economics and Political Science, LSE Library.
    12. Alfiero, Simona & Battisti, Enrico & Ηadjielias, Elias, 2022. "Black box technology, usage-based insurance, and prediction of purchase behavior: Evidence from the auto insurance sector," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    13. Nemanja Milanović & Miloš Milosavljević & Slađana Benković & Dušan Starčević & Željko Spasenić, 2020. "An Acceptance Approach for Novel Technologies in Car Insurance," Sustainability, MDPI, vol. 12(24), pages 1-15, December.
    14. Guillen, Montserrat & Bermúdez, Lluís & Pitarque, Albert, 2021. "Joint generalized quantile and conditional tail expectation regression for insurance risk analysis," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 1-8.
    15. Ma, Yu-Luen & Zhu, Xiaoyu & Hu, Xianbiao & Chiu, Yi-Chang, 2018. "The use of context-sensitive insurance telematics data in auto insurance rate making," Transportation Research Part A: Policy and Practice, Elsevier, vol. 113(C), pages 243-258.
    16. Tzougas, George & Makariou, Despoina, 2022. "The multivariate Poisson-Generalized Inverse Gaussian claim count regression model with varying dispersion and shape parameters," LSE Research Online Documents on Economics 117197, London School of Economics and Political Science, LSE Library.
    17. Alicja Wolny-Dominiak & Tomasz Żądło, 2021. "The Measures of Accuracy of Claim Frequency Credibility Predictor," Sustainability, MDPI, vol. 13(21), pages 1-13, October.
    18. Zhiyu Quan & Changyue Hu & Panyi Dong & Emiliano A. Valdez, 2024. "Improving Business Insurance Loss Models by Leveraging InsurTech Innovation," Papers 2401.16723, arXiv.org.
    19. Michel Denuit & Yang Lu, 2021. "Wishart‐gamma random effects models with applications to nonlife insurance," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 88(2), pages 443-481, June.
    20. Chen, Zezhun Chen & Dassios, Angelos & Tzougas, George, 2023. "EM estimation for bivariate mixed poisson INAR(1) claim count regression models with correlated random effects," LSE Research Online Documents on Economics 118826, London School of Economics and Political Science, LSE Library.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:24:p:16386-:d:996587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.