IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

How Persistent is Volatility? An Answer with Stochastic Volatility Models with Markov Regime Switching State Equations

  • Pedro L. Valls Pereira

We introduce SV models with Markov regime changing state equation (SVMRS) to investigate the important properties of volatility, high persistence and smoothness. With the quasi-ML approach proposed in our study, we showed that volatility is far less persistent and smooth than the GARCH or SV models suggest

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.ibmecsp.edu.br/pesquisa/download.php?recid=2734
Our checks indicate that this address may not be valid because: 500 Can't connect to www.ibmecsp.edu.br:80. If this is indeed the case, please notify (Naercio Menezes)


Download Restriction: no

Paper provided by Finance Lab, Insper Instituto de Ensino e Pesquisa in its series Finance Lab Working Papers with number flwp_59.

as
in new window

Length:
Date of creation: Oct 2004
Date of revision:
Handle: RePEc:ibm:finlab:flwp_59
Contact details of provider: Postal: Rua Quatá 300, São Paulo, SP 04546-042
Fax: +55+11+287-9076
Web page: http://www.insper.edu.br/

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Andrew J. Filardo, 1993. "Business cycle phases and their transitional dynamics," Research Working Paper 93-14, Federal Reserve Bank of Kansas City.
  2. Harvey, Andrew & Ruiz, Esther & Shephard, Neil, 1994. "Multivariate Stochastic Variance Models," Review of Economic Studies, Wiley Blackwell, vol. 61(2), pages 247-64, April.
  3. Steve Satchell & Soosung Hwang, 2001. "GARCH Model with Cross-sectional Volatility; GARCHX Models," Working Papers wp01-16, Warwick Business School, Finance Group.
  4. Granger, Clive W.J. & Teräsvirta, Timo, 1998. "A simple nonlinear time series model with misleading linear properties," SSE/EFI Working Paper Series in Economics and Finance 237, Stockholm School of Economics.
  5. So, Mike K P & Lam, K & Li, W K, 1998. "A Stochastic Volatility Model with Markov Switching," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 244-53, April.
  6. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
  7. Hull, John C & White, Alan D, 1987. " The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
  8. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
  9. Clive W.J. Granger & Namwon Hyung, 2013. "Occasional Structural Breaks and Long Memory," Annals of Economics and Finance, Society for AEF, vol. 14(2), pages 739-764, November.
  10. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
  11. Sassan Alizadeh & Michael W. Brandt & Francis X. Diebold, 2002. "Range-Based Estimation of Stochastic Volatility Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1047-1091, 06.
  12. Bruce E. Hansen, 2001. "The New Econometrics of Structural Change: Dating Breaks in U.S. Labour Productivity," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 117-128, Fall.
  13. Raúl Susmel & Madhu Kalimipalli, 2001. "Regime-Switching Stochastic Volatility and Short-Term Interest Rates," CEMA Working Papers: Serie Documentos de Trabajo. 197, Universidad del CEMA.
  14. Ben-David, D. & Papell, D.H., 1996. "Slowdowns and Meltdowns: Post-War Growth Evidence from 74 Countries," Papers 9-96, Tel Aviv.
  15. Lobato, Ignacio N & Savin, N E, 1998. "Real and Spurious Long-Memory Properties of Stock-Market Data: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 280-83, July.
  16. Hwang, Soosung & Satchell, Stephen E., 2000. "Market risk and the concept of fundamental volatility: Measuring volatility across asset and derivative markets and testing for the impact of derivatives markets on financial markets," Journal of Banking & Finance, Elsevier, vol. 24(5), pages 759-785, May.
  17. Lobato, I.N. & Savin, N.E., 1996. "Real and Spurious Long Memory Properties of Stock Market Data," Working Papers 96-07, University of Iowa, Department of Economics.
  18. Andrew C Harvey & N.G. Shephard, 1993. "Estimation and Testing of Stochastic Variance Models," STICERD - Econometrics Paper Series 268, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
  19. repec:cep:stiecm:/1993/268 is not listed on IDEAS
  20. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
  21. Harvey, Andrew C & Shephard, Neil, 1996. "Estimation of an Asymmetric Stochastic Volatility Model for Asset Returns," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(4), pages 429-34, October.
  22. Smith, Daniel R, 2002. "Markov-Switching and Stochastic Volatility Diffusion Models of Short-Term Interest Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 183-97, April.
  23. Bai, Jushan & Lumsdaine, Robin L & Stock, James H, 1998. "Testing for and Dating Common Breaks in Multivariate Time Series," Review of Economic Studies, Wiley Blackwell, vol. 65(3), pages 395-432, July.
  24. Hamilton, James D. & Susmel, Raul, 1994. "Autoregressive conditional heteroskedasticity and changes in regime," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 307-333.
  25. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-84, March.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ibm:finlab:flwp_59. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Naercio Menezes)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.