IDEAS home Printed from https://ideas.repec.org/p/iaw/iawdip/53.html
   My bibliography  Save this paper

IV-Schätzung eines linearen Panelmodells mit stochastisch überlagerten Betriebs- und Unternehmensdaten

Author

Listed:
  • Elena Biewen
  • Gerd Ronning
  • Martin Rosemann

Abstract

Eines der wichtigsten Verfahren zur Anonymisierung von Betriebs- und Unternehmensdaten ist die stochastische Überlagerung. Ihr Einsatz zur Sicherstellung der faktischen Anonymität der Einheiten eines Datensatzes führt jedoch zu inkonsistenten Schätzungen von linearen Panelmodellen und macht die Verwendung von Korrekturverfahren erforderlich. Dieser Beitrag befasst sich mit der Instrumentvariablen-Schätzung (IV-Schätzung) eines linearen Panelmodells mit Individualeffekten und überprüft die Eignung der IV-Methode zur Korrektur der Verzerrung. Als Instrumente werden (a) eine verzögerte Variable, (b) die Differenz von verzögerten Variablen und (c) eine zusätzlich anonymisierte Variable getestet. Wir kommen zum Ergebnis, dass lediglich das letzte Instrument in konsistenten IV-Schätzern resultiert.

Suggested Citation

  • Elena Biewen & Gerd Ronning & Martin Rosemann, 2009. "IV-Schätzung eines linearen Panelmodells mit stochastisch überlagerten Betriebs- und Unternehmensdaten," IAW Discussion Papers 53, Institut für Angewandte Wirtschaftsforschung (IAW).
  • Handle: RePEc:iaw:iawdip:53
    as

    Download full text from publisher

    File URL: http://www.iaw.edu/RePEc/iaw/pdf/iaw_dp_53.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wansbeek, Tom, 2001. "GMM estimation in panel data models with measurement error," Journal of Econometrics, Elsevier, vol. 104(2), pages 259-268, September.
    2. Griliches, Zvi & Hausman, Jerry A., 1986. "Errors in variables in panel data," Journal of Econometrics, Elsevier, vol. 31(1), pages 93-118, February.
    3. Biorn, Erik & Klette, Tor Jakob, 1998. "Panel data with errors-in-variables: essential and redundant orthogonality conditions in GMM-estimation," Economics Letters, Elsevier, vol. 59(3), pages 275-282, June.
    4. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    5. Arellano, Manuel, 2003. "Panel Data Econometrics," OUP Catalogue, Oxford University Press, number 9780199245291.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erik Biørn, 2002. "Handling the measurement error problem by means of panel data: Moment methods applied on firm data," 10th International Conference on Panel Data, Berlin, July 5-6, 2002 B6-1, International Conferences on Panel Data.
    2. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    3. William Hauk & Romain Wacziarg, 2009. "A Monte Carlo study of growth regressions," Journal of Economic Growth, Springer, vol. 14(2), pages 103-147, June.
    4. Lee, Angela Y. & Aaker, Jennifer L., 2006. "A Monte Carlo Study of Growth Regressions," Research Papers 1836r1, Stanford University, Graduate School of Business.
    5. Biørn, Erik, 2012. "The Measurement Error Problem in Dynamic Panel Data Analysis: Modeling and GMM Estimation," Memorandum 02/2012, Oslo University, Department of Economics.
    6. Meijer, Erik & Spierdijk, Laura & Wansbeek, Tom, 2017. "Consistent estimation of linear panel data models with measurement error," Journal of Econometrics, Elsevier, vol. 200(2), pages 169-180.
    7. Sultan Mehmood, 2013. "Access to External Finance and Innovation: A Macroeconomic Perspective," CPB Discussion Paper 218, CPB Netherlands Bureau for Economic Policy Analysis.
    8. Erik Biørn, 2000. "Panel Data With Measurement Errors: Instrumental Variables And Gmm Procedures Combining Levels And Differences," Econometric Reviews, Taylor & Francis Journals, vol. 19(4), pages 391-424.
    9. Ramses Abul Naga, 2008. "Biases of the ordinary least squares and instrumental variables estimators of the intergenerational earnings elasticity: Revisited in the light of panel data," The Journal of Economic Inequality, Springer;Society for the Study of Economic Inequality, vol. 6(4), pages 323-350, December.
    10. Biørn, Erik & Han, Xuehui, 2012. "Panel Data Dynamics and Measurement Errors: GMM Bias, IV Validity and Model Fit – A Monte Carlo Study," Memorandum 27/2012, Oslo University, Department of Economics.
    11. Sultan Mehmood, 2013. "Access to External Finance and Innovation: A Macroeconomic Perspective," CPB Discussion Paper 218.rdf, CPB Netherlands Bureau for Economic Policy Analysis.
    12. Erik Biørn, 2015. "Panel data dynamics with mis-measured variables: modeling and GMM estimation," Empirical Economics, Springer, vol. 48(2), pages 517-535, March.
    13. Mario Jametti & Thomas von Ungern-Sternberg, 2005. "Assessing the Efficiency of an Insurance Provider—A Measurement Error Approach," The Geneva Risk and Insurance Review, Palgrave Macmillan;International Association for the Study of Insurance Economics (The Geneva Association), vol. 30(1), pages 15-34, June.
    14. Hugo Benítez-Silva & Debra Dwyer & Wayne-Roy Gayle & Thomas Muench, 2008. "Expectations in micro data: rationality revisited," Empirical Economics, Springer, vol. 34(2), pages 381-416, March.
    15. Zhiguo Xiao & Jun Shao & Mari Palta, 2010. "GMM in linear regression for longitudinal data with multiple covariates measured with error," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(5), pages 791-805.
    16. Poncet, Sandra & Steingress, Walter & Vandenbussche, Hylke, 2010. "Financial constraints in China: Firm-level evidence," China Economic Review, Elsevier, vol. 21(3), pages 411-422, September.
    17. Subha Mani, 2012. "Is there Complete, Partial, or No Recovery from Childhood Malnutrition? – Empirical Evidence from Indonesia," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(5), pages 691-715, October.
    18. Áureo De Paula & Gil Shapira & Petra E. Todd, 2014. "How Beliefs About Hiv Status Affect Risky Behaviors: Evidence From Malawi," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(6), pages 944-964, September.
    19. Maurice J.G. Bun & Sarafidis, V., 2013. "Dynamic Panel Data Models," UvA-Econometrics Working Papers 13-01, Universiteit van Amsterdam, Dept. of Econometrics.
    20. Timothy Halliday, 2006. "Income Risk and Health," Working Papers 200612, University of Hawaii at Manoa, Department of Economics.

    More about this item

    Keywords

    Instrumentvariablen-Schätzung; additive und multiplikative stochastische Überlagerungen; Anonymisierung von Paneldaten;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iaw:iawdip:53. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Rolf Kleimann (email available below). General contact details of provider: https://edirc.repec.org/data/iawtude.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.