IDEAS home Printed from https://ideas.repec.org/p/cpd/pd2002/b6-1.html
   My bibliography  Save this paper

Handling the measurement error problem by means of panel data: Moment methods applied on firm data

Author

Listed:
  • Erik Biørn

    (University of Oslo, Department of Economics)

Abstract

The estimation of a linear equation from panel data with measurement errors is considered. The equation is estimated (I) by methods operating on the equation in differenced period means, and (II) by Generalized Method of Moments (GMM) procedures using (a) the equation in differences with instruments in levels and (b) the equation in levels with instruments in differences. Both difference transformations eliminate unobserved individual heterogeneity. Examples illustrating the input response to output changes for materials and capital inputs from an eight year panel of Norwegian manufacturing firms, are given.

Suggested Citation

  • Erik Biørn, 2002. "Handling the measurement error problem by means of panel data: Moment methods applied on firm data," 10th International Conference on Panel Data, Berlin, July 5-6, 2002 B6-1, International Conferences on Panel Data.
  • Handle: RePEc:cpd:pd2002:b6-1
    as

    Download full text from publisher

    File URL: http://econpapers.repec.org/cpd/2002/28_Biorn.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Arellano, Manuel & Bover, Olympia, 1995. "Another look at the instrumental variable estimation of error-components models," Journal of Econometrics, Elsevier, vol. 68(1), pages 29-51, July.
    3. Erik Biørn, 2000. "Panel Data With Measurement Errors: Instrumental Variables And Gmm Procedures Combining Levels And Differences," Econometric Reviews, Taylor & Francis Journals, vol. 19(4), pages 391-424.
    4. Wansbeek, Tom, 2001. "GMM estimation in panel data models with measurement error," Journal of Econometrics, Elsevier, vol. 104(2), pages 259-268, September.
    5. Nelson, Charles R & Startz, Richard, 1990. "Some Further Results on the Exact Small Sample Properties of the Instrumental Variable Estimator," Econometrica, Econometric Society, vol. 58(4), pages 967-976, July.
    6. Biorn, Erik, 1992. "The Bias of Some Estimators for Panel Data Models with Measurement Errors," Empirical Economics, Springer, vol. 17(1), pages 51-66.
    7. Griliches, Zvi & Hausman, Jerry A., 1986. "Errors in variables in panel data," Journal of Econometrics, Elsevier, vol. 31(1), pages 93-118, February.
    8. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.
    9. Matyas,Laszlo (ed.), 1999. "Generalized Method of Moments Estimation," Cambridge Books, Cambridge University Press, number 9780521669672.
    10. Klepper, Steven & Leamer, Edward E, 1984. "Consistent Sets of Estimates for Regressions with Errors in All Variables," Econometrica, Econometric Society, vol. 52(1), pages 163-183, January.
    11. White, Halbert, 1982. "Instrumental Variables Regression with Independent Observations," Econometrica, Econometric Society, vol. 50(2), pages 483-499, March.
    12. Erik Biørn & Tor Jakob Klette, 1999. "The Labour Input Response to Permanent Changes in Output: An Errors‐in‐Variables Analysis Based on Panel Data," Scandinavian Journal of Economics, Wiley Blackwell, vol. 101(3), pages 379-404, September.
    13. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    14. K. Newey, Whitney, 1985. "Generalized method of moments specification testing," Journal of Econometrics, Elsevier, vol. 29(3), pages 229-256, September.
    15. Bekker, Paul & Kapteyn, Arie & Wansbeek, Tom, 1987. "Consistent Sets of Estimates for Regressions with Correlated or Uncorrelated Measurement Errors in Arbitrary Subsets of All Variables," Econometrica, Econometric Society, vol. 55(5), pages 1223-1230, September.
    16. Ahn, Seung C. & Schmidt, Peter, 1995. "Efficient estimation of models for dynamic panel data," Journal of Econometrics, Elsevier, vol. 68(1), pages 5-27, July.
    17. Davidson, Russell & MacKinnon, James G., 1993. "Estimation and Inference in Econometrics," OUP Catalogue, Oxford University Press, number 9780195060119, Decembrie.
    18. Biorn, Erik & Klette, Tor Jakob, 1998. "Panel data with errors-in-variables: essential and redundant orthogonality conditions in GMM-estimation," Economics Letters, Elsevier, vol. 59(3), pages 275-282, June.
    19. Boozer, Michael A., 1997. "Econometric Analysis of Panel DataBadi H. Baltagi Wiley, 1995," Econometric Theory, Cambridge University Press, vol. 13(5), pages 747-754, October.
    20. Jorgenson, Dale W., 1986. "Econometric methods for modeling producer behavior," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 3, chapter 31, pages 1841-1915, Elsevier.
    21. Manuel Arellano & Stephen Bond, 1991. "Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 58(2), pages 277-297.
    22. T.J. Wansbeek & R.H. Koning, 1991. "Measurement error and panel data1," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 45(2), pages 85-92, June.
    23. Matyas,Laszlo (ed.), 1999. "Generalized Method of Moments Estimation," Cambridge Books, Cambridge University Press, number 9780521660136.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erik Biørn, 2000. "Panel Data With Measurement Errors: Instrumental Variables And Gmm Procedures Combining Levels And Differences," Econometric Reviews, Taylor & Francis Journals, vol. 19(4), pages 391-424.
    2. Biørn, Erik, 2012. "The Measurement Error Problem in Dynamic Panel Data Analysis: Modeling and GMM Estimation," Memorandum 02/2012, Oslo University, Department of Economics.
    3. Erik Biørn, 2015. "Panel data dynamics with mis-measured variables: modeling and GMM estimation," Empirical Economics, Springer, vol. 48(2), pages 517-535, March.
    4. Guilhem Bascle, 2008. "Controlling for endogeneity with instrumental variables in strategic management research," Post-Print hal-00576795, HAL.
    5. Meijer, Erik & Spierdijk, Laura & Wansbeek, Tom, 2017. "Consistent estimation of linear panel data models with measurement error," Journal of Econometrics, Elsevier, vol. 200(2), pages 169-180.
    6. Biørn, Erik & Han, Xuehui, 2012. "Panel Data Dynamics and Measurement Errors: GMM Bias, IV Validity and Model Fit – A Monte Carlo Study," Memorandum 27/2012, Oslo University, Department of Economics.
    7. Erik Biørn & Xuehui Han, 2017. "Revisiting the FDI impact on GDP growth in errors-in-variables models: a panel data GMM analysis allowing for error memory," Empirical Economics, Springer, vol. 53(4), pages 1379-1398, December.
    8. Binder, Michael & Hsiao, Cheng & Pesaran, M. Hashem, 2005. "Estimation And Inference In Short Panel Vector Autoregressions With Unit Roots And Cointegration," Econometric Theory, Cambridge University Press, vol. 21(4), pages 795-837, August.
    9. William Hauk & Romain Wacziarg, 2009. "A Monte Carlo study of growth regressions," Journal of Economic Growth, Springer, vol. 14(2), pages 103-147, June.
    10. Lee, Angela Y. & Aaker, Jennifer L., 2006. "A Monte Carlo Study of Growth Regressions," Research Papers 1836r1, Stanford University, Graduate School of Business.
    11. Andrew M. Jones & José M. Labeaga, 2003. "Individual heterogeneity and censoring in panel data estimates of tobacco expenditure," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(2), pages 157-177.
    12. Jean-Louis ARCAND & Béatrice D'HOMBRES, 2002. "Explaining the Negative Coefficient Associated with Human Capital in Augmented Solow Growth Regressions," Working Papers 200227, CERDI.
    13. Emma L. Schultz & David T. Tan & Kathleen D. Walsh, 2010. "Endogeneity and the corporate governance - performance relation," Australian Journal of Management, Australian School of Business, vol. 35(2), pages 145-163, August.
    14. Blundell, Richard & Bond, Stephen, 2023. "Reprint of: Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 234(S), pages 38-55.
    15. Jacques Mairesse & Bronwyn H. Hall & Benoît Mulkay, 1999. "Firm-Level Investment in France and the United States: An Exploration of What We Have Learned in Twenty Years," Annals of Economics and Statistics, GENES, issue 55-56, pages 27-67.
    16. Maurice J.G. Bun & Sarafidis, V., 2013. "Dynamic Panel Data Models," UvA-Econometrics Working Papers 13-01, Universiteit van Amsterdam, Dept. of Econometrics.
    17. Sarafidis, Vasilis & Yamagata, Takashi & Robertson, Donald, 2009. "A test of cross section dependence for a linear dynamic panel model with regressors," Journal of Econometrics, Elsevier, vol. 148(2), pages 149-161, February.
    18. Norman Loayza & Klaus Schmidt-Hebbel & Luis Servén, 2000. "What Drives Private Saving Across the World?," The Review of Economics and Statistics, MIT Press, vol. 82(2), pages 165-181, May.
    19. Majid M. Al-Sadoon & Tong Li & M. Hashem Pesaran, 2017. "Exponential class of dynamic binary choice panel data models with fixed effects," Econometric Reviews, Taylor & Francis Journals, vol. 36(6-9), pages 898-927, October.
    20. Blundell, Richard & Bond, Stephen, 1998. "Initial conditions and moment restrictions in dynamic panel data models," Journal of Econometrics, Elsevier, vol. 87(1), pages 115-143, August.

    More about this item

    Keywords

    Panel Data. Errors-in-Variables. GMM Estimation. Factor Demand. Returns to scale;

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • D24 - Microeconomics - - Production and Organizations - - - Production; Cost; Capital; Capital, Total Factor, and Multifactor Productivity; Capacity
    • L60 - Industrial Organization - - Industry Studies: Manufacturing - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cpd:pd2002:b6-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sune Karlsson (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.