IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Editing and multiply imputing German establishment panel data to estimate stochastic production frontier models

Listed author(s):
  • Kölling, Arnd
  • Rässler, Susanne

    (Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany])

Registered author(s):

    "This paper illustrates the effects of item-nonresponse in surveys on the results of multivariate statistical analysis when estimation of productivity is the task. To multiply impute the missing data a data augmentation algorithm based on a normal/Wishart model is applied. Data of the German IAB Establishment Panel from waves 2000 and 2001 are used to estimate the establishment’s productivity. The processes of constructing, editing, and transforming the variables needed for the analyst’s as well as the imputer’s models are described. It is shown that standard multiple imputation techniques can be used to estimate sophisticated econometric models from large-scale panel data exposed to item-nonresponse. Basis of the empirical analysis is a stochastic production frontier model with labour and capital as input factors. The results show that a model of technical inefficiency is favoured compared to a case where we assume different production functions in East and West Germany. Also we see that the effect of regional setting on technical inefficiency increases when inference is based on multiply imputed data sets. This could have influence on the economic and regional policies in Germany in the future." (Author's abstract, IAB-Doku) ((en))

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany] in its series IAB Discussion Paper with number 200405.

    in new window

    Length: 34 pages
    Date of creation: 07 Oct 2004
    Publication status: published in: Zeitschrift für ArbeitsmarktForschung 37 (2004), p. 306-318
    Handle: RePEc:iab:iabdpa:200405
    Contact details of provider: Postal:
    Regensburger Str. 104, D-90327 Nürnberg

    Phone: 0911/179-0
    Fax: 0911/179-3258
    Web page:

    More information through EDIRC

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

    in new window

    1. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    2. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    Full references (including those not matched with items on IDEAS)

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:iab:iabdpa:200405. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (IAB, Geschäftsbereich Dokumentation und Bibliothek)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.