IDEAS home Printed from
   My bibliography  Save this paper

Designing an Index for Assessing Wind Energy Potential


  • Matthias Ritter
  • Zhiwei Shen
  • Brenda López Cabrera
  • Martin Odening
  • Lars Deckert


To meet the increasing global demand for renewable energy such as wind energy, more and more new wind parks are installed worldwide. Finding a suitable location, however, requires a detailed and often costly analysis of the local wind conditions. Plain average wind speed maps cannot provide a precise forecast of wind power because of the non-linear relationship between wind speed and production. In this paper, we suggest a new approach of assessing the local wind energy potential: Meteorological reanalysis data are applied to obtain long-term low-scale wind speed data at turbine location and hub height; then, with actual high-frequency production data, the relation between wind data and energy production is determined via a five parameter logistic function. The resulting wind energy index allows for a turbine-specific estimation of the expected wind power at an unobserved location. A map of wind power potential for whole Germany exemplifies the approach.

Suggested Citation

  • Matthias Ritter & Zhiwei Shen & Brenda López Cabrera & Martin Odening & Lars Deckert, 2014. "Designing an Index for Assessing Wind Energy Potential," SFB 649 Discussion Papers SFB649DP2014-052, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
  • Handle: RePEc:hum:wpaper:sfb649dp2014-052

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Kubik, M.L. & Coker, P.J. & Barlow, J.F. & Hunt, C., 2013. "A study into the accuracy of using meteorological wind data to estimate turbine generation output," Renewable Energy, Elsevier, vol. 51(C), pages 153-158.
    2. Caporin, Massimiliano & Preś, Juliusz, 2012. "Modelling and forecasting wind speed intensity for weather risk management," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3459-3476.
    3. Kotroni, V. & Lagouvardos, K. & Lykoudis, S., 2014. "High-resolution model-based wind atlas for Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 479-489.
    4. Carta, José A. & Velázquez, Sergio & Cabrera, Pedro, 2013. "A review of measure-correlate-predict (MCP) methods used to estimate long-term wind characteristics at a target site," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 362-400.
    5. Kubik, M.L. & Brayshaw, D.J. & Coker, P.J. & Barlow, J.F., 2013. "Exploring the role of reanalysis data in simulating regional wind generation variability over Northern Ireland," Renewable Energy, Elsevier, vol. 57(C), pages 558-561.
    6. Sinden, Graham, 2007. "Characteristics of the UK wind resource: Long-term patterns and relationship to electricity demand," Energy Policy, Elsevier, vol. 35(1), pages 112-127, January.
    7. Sanchez, Ismael, 2006. "Short-term prediction of wind energy production," International Journal of Forecasting, Elsevier, vol. 22(1), pages 43-56.
    8. Carvalho, D. & Rocha, A. & Gómez-Gesteira, M. & Silva Santos, C., 2014. "WRF wind simulation and wind energy production estimates forced by different reanalyses: Comparison with observed data for Portugal," Applied Energy, Elsevier, vol. 117(C), pages 116-126.
    9. Chang, Tsang-Jung & Wu, Yu-Ting & Hsu, Hua-Yi & Chu, Chia-Ren & Liao, Chun-Min, 2003. "Assessment of wind characteristics and wind turbine characteristics in Taiwan," Renewable Energy, Elsevier, vol. 28(6), pages 851-871.
    10. Staffell, Iain & Green, Richard, 2014. "How does wind farm performance decline with age?," Renewable Energy, Elsevier, vol. 66(C), pages 775-786.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Murthy, K.S.R. & Rahi, O.P., 2016. "Preliminary assessment of wind power potential over the coastal region of Bheemunipatnam in northern Andhra Pradesh, India," Renewable Energy, Elsevier, vol. 99(C), pages 1137-1145.
    2. Matthias Ritter & Simone Pieralli & Martin Odening, 2017. "Neighborhood Effects in Wind Farm Performance: A Regression Approach," Energies, MDPI, Open Access Journal, vol. 10(3), pages 1-16, March.
    3. Awdesch Melzer & Wolfgang K. Härdle & Brenda López Cabrera, 2017. "Pricing Green Financial Products," SFB 649 Discussion Papers SFB649DP2017-020, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    4. Ritter, Matthias & Deckert, Lars, 2017. "Site assessment, turbine selection, and local feed-in tariffs through the wind energy index," Applied Energy, Elsevier, vol. 185(P2), pages 1087-1099.
    5. repec:eee:energy:v:147:y:2018:i:c:p:1092-1107 is not listed on IDEAS
    6. repec:eee:appene:v:238:y:2019:i:c:p:1179-1191 is not listed on IDEAS
    7. Hain, Martin & Schermeyer, Hans & Uhrig-Homburg, Marliese & Fichtner, Wolf, 2017. "An Electricity Price Modeling Framework for Renewable-Dominant Markets," Working Paper Series in Production and Energy 23, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    8. repec:eee:eneeco:v:72:y:2018:i:c:p:542-557 is not listed on IDEAS
    9. Shen, Zhiwei & Ritter, Matthias, 2016. "Forecasting volatility of wind power production," Applied Energy, Elsevier, vol. 176(C), pages 295-308.
    10. repec:gam:jeners:v:10:y:2017:i:8:p:1229-:d:108869 is not listed on IDEAS
    11. repec:eee:renene:v:119:y:2018:i:c:p:777-786 is not listed on IDEAS
    12. repec:eee:renene:v:133:y:2019:i:c:p:1468-1478 is not listed on IDEAS
    13. Tajeddin, Alireza & Fazelpour, Farivar, 2016. "Towards realistic design of wind dams: An innovative approach to enhance wind potential," Applied Energy, Elsevier, vol. 182(C), pages 282-298.

    More about this item


    Wind power; energy production; renewable energy; onshore wind; MERRA;

    JEL classification:

    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hum:wpaper:sfb649dp2014-052. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (RDC-Team). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.