IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

On the Distributional Assumptions in the StoNED model

Listed author(s):
  • Cheng, Xiaomei

    ()

    (Dept. of Business and Management Science, Norwegian School of Economics)

  • Andersson, Jonas

    ()

    (Dept. of Business and Management Science, Norwegian School of Economics)

  • Bjørndal, Endre

    ()

    (Dept. of Business and Management Science, Norwegian School of Economics)

In a recent paper Johnson and Kuosmanen (2011) propose a new, semi-parametric, general cost-frontier model, the stochastic nonparametric envelopment of data (StoNED). The model is semi-parametric in the sense that the cost function is estimated nonparametrically, while the functional form of the distribution for the error term is parametrically specified. A common assumption for this distribution is that it is a convolution of a truncated normal distribution, representing inefficiency, and a normal distribution, representing noise. This parametric form has the drawback that a negative skewness implies a negative expected inefficiency. It can thus never capture a negatively skewed distribution with a positive expectation. In this paper we investigate this assumption and its consequences for an analysis of inefficiency. Furthermore, we propose a solution to the problem and investigate its performance by means of a Monte Carlo simulation.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://hdl.handle.net/11250/300521
Download Restriction: no

Paper provided by Department of Business and Management Science, Norwegian School of Economics in its series Discussion Papers with number 2015/24.

as
in new window

Length: 12 pages
Date of creation: 17 Sep 2015
Handle: RePEc:hhs:nhhfms:2015_024
Contact details of provider: Postal:
NHH, Department of Business and Management Science, Helleveien 30, N-5045 Bergen, Norway

Phone: +47 55 95 92 93
Fax: +47 55 95 96 50
Web page: http://www.nhh.no/en/research-faculty/department-of-business-and-management-science.aspx
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Kumbhakar, Subal C., 1991. "Estimation of technical inefficiency in panel data models with firm- and time-specific effects," Economics Letters, Elsevier, vol. 36(1), pages 43-48, May.
  2. Green, Alison & Mayes, David, 1991. "Technical Inefficiency in Manufacturing Industries," Economic Journal, Royal Economic Society, vol. 101(406), pages 523-538, May.
  3. Andrew Johnson & Timo Kuosmanen, 2011. "One-stage estimation of the effects of operational conditions and practices on productive performance: asymptotically normal and efficient, root-n consistent StoNEZD method," Journal of Productivity Analysis, Springer, vol. 36(2), pages 219-230, October.
  4. Greene, William H., 1980. "On the estimation of a flexible frontier production model," Journal of Econometrics, Elsevier, vol. 13(1), pages 101-115, May.
  5. Kumbhakar, Subal C., 1990. "Production frontiers, panel data, and time-varying technical inefficiency," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 201-211.
  6. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
  7. Olson, Jerome A. & Schmidt, Peter & Waldman, Donald M., 1980. "A Monte Carlo study of estimators of stochastic frontier production functions," Journal of Econometrics, Elsevier, vol. 13(1), pages 67-82, May.
  8. Kuosmanen, Timo, 2012. "Stochastic semi-nonparametric frontier estimation of electricity distribution networks: Application of the StoNED method in the Finnish regulatory model," Energy Economics, Elsevier, vol. 34(6), pages 2189-2199.
  9. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
  10. Cheng, Xiaomei & Bjørndal, Endre & Bjørndal, Mette, 2014. "Cost Efficiency Analysis based on The DEA and StoNED Models: Case of Norwegian Electricity Distribution Companies," Discussion Papers 2014/28, Department of Business and Management Science, Norwegian School of Economics.
  11. Stevenson, Rodney E., 1980. "Likelihood functions for generalized stochastic frontier estimation," Journal of Econometrics, Elsevier, vol. 13(1), pages 57-66, May.
  12. Carree, Martin A., 2002. "Technological inefficiency and the skewness of the error component in stochastic frontier analysis," Economics Letters, Elsevier, vol. 77(1), pages 101-107, September.
  13. Cornwell, Christopher & Schmidt, Peter & Sickles, Robin C., 1990. "Production frontiers with cross-sectional and time-series variation in efficiency levels," Journal of Econometrics, Elsevier, vol. 46(1-2), pages 185-200.
  14. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
  15. Leopold Simar & Paul Wilson, 2010. "Inferences from Cross-Sectional, Stochastic Frontier Models," Econometric Reviews, Taylor & Francis Journals, vol. 29(1), pages 62-98.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:hhs:nhhfms:2015_024. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Stein Fossen)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.