IDEAS home Printed from https://ideas.repec.org/p/hhs/ifauwp/2005_004.html
   My bibliography  Save this paper

Covariate selection for non-parametric estimation of treatment effects

Author

Listed:
  • de Luna, Xavier

    () (Umeå University)

  • Waernbaum, Ingeborg

    () (Umeå University)

Abstract

In observational studies, the non-parametric estimation of a binary treatment effect is often performed by matching each treated individual with a control unit which is similar in observed characteristics (covariates). In practical applications, the reservoir of covariates available may be extensive and the question arises which covariates should be matched for. The current practice consists in matching for covariates which are not balanced for the treated and the control groups, i.e. covariates affecting the treatment assignment. This paper develops a theory based on graphical models, whose results emphasize the need for methods looking both at how the covariates affect the treatment assignment and the outcome. Furthermore, we propose identification algorithms to select at minimal set of covariates to match for. An application to the estimation of the effect of a social program is used to illustrate the implementation of such algorithms.

Suggested Citation

  • de Luna, Xavier & Waernbaum, Ingeborg, 2005. "Covariate selection for non-parametric estimation of treatment effects," Working Paper Series 2005:4, IFAU - Institute for Evaluation of Labour Market and Education Policy.
  • Handle: RePEc:hhs:ifauwp:2005_004
    as

    Download full text from publisher

    File URL: http://www.ifau.se/upload/pdf/se/2005/wp05-04.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Robert J. LaLonde, 1984. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," Working Papers 563, Princeton University, Department of Economics, Industrial Relations Section..
    2. A. Smith, Jeffrey & E. Todd, Petra, 2005. "Does matching overcome LaLonde's critique of nonexperimental estimators?," Journal of Econometrics, Elsevier, vol. 125(1-2), pages 305-353.
    3. Rajeev H. Dehejia & Sadek Wahba, 1998. "Causal Effects in Non-Experimental Studies: Re-Evaluating the Evaluation of Training Programs," NBER Working Papers 6586, National Bureau of Economic Research, Inc.
    4. Su, Liangjun & White, Halbert, 2014. "Testing conditional independence via empirical likelihood," Journal of Econometrics, Elsevier, vol. 182(1), pages 27-44.
    5. Rajeev H. Dehejia & Sadek Wahba, 2002. "Propensity Score-Matching Methods For Nonexperimental Causal Studies," The Review of Economics and Statistics, MIT Press, vol. 84(1), pages 151-161, February.
    6. LaLonde, Robert J, 1986. "Evaluating the Econometric Evaluations of Training Programs with Experimental Data," American Economic Review, American Economic Association, pages 604-620.
    7. Alberto Abadie & Guido W. Imbens, 2002. "Simple and Bias-Corrected Matching Estimators for Average Treatment Effects," NBER Technical Working Papers 0283, National Bureau of Economic Research, Inc.
    8. James Heckman & Salvador Navarro-Lozano, 2004. "Using Matching, Instrumental Variables, and Control Functions to Estimate Economic Choice Models," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 30-57, February.
    9. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, pages 4-29.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Persson, Emma & Häggström, Jenny & Waernbaum, Ingeborg & de Luna, Xavier, 2017. "Data-driven algorithms for dimension reduction in causal inference," Computational Statistics & Data Analysis, Elsevier, pages 280-292.

    More about this item

    Keywords

    Graphical models; matching estimators; observational studies; potential outcomes; social programs;

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:ifauwp:2005_004. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Monica Fällgren). General contact details of provider: http://edirc.repec.org/data/ifagvse.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.