IDEAS home Printed from https://ideas.repec.org/p/hhs/gunefd/2018_008.html
   My bibliography  Save this paper

Climate-Smart Agricultural Practices and Welfare of Rural Smallholders in Ethiopia: Does Planting Method Matter?

Author

Listed:
  • Fentie, Amare
  • Beyene, Abebe D.

Abstract

The purpose of this study is to provide empirical evidence on the impact of a climate-smart agricultural practice (row planting) on the welfare of rural households. Data collected from 260 households in the North Wollo Zone of Ethiopia were analyzed using Propensity Score Matching (PSM) and a semi-parametric Local Instrumental Variable (LIV) version of the generalized Roy model. The results from the PSM revealed that adoption of row planting technology has a positive and significant impact on per capita consumption and on crop income per hectare. Covariates are well balanced and the effect of unobserved selection bias on the impact estimate is insignificant, indicating that the estimates are largely the effect of row planting. Similarly, the semi-parametric LIV model suggests that average treatment effect is positive and significant for crop income. Marginal benefit of row planting is increasing with higher propensity of the farmer to adopt this practice. Therefore, scaling up the technology will significantly contribute to farmers’ resilience against the adverse effects of climate change through enhancing household’s income and food security.

Suggested Citation

  • Fentie, Amare & Beyene, Abebe D., 2018. "Climate-Smart Agricultural Practices and Welfare of Rural Smallholders in Ethiopia: Does Planting Method Matter?," EfD Discussion Paper 18-8, Environment for Development, University of Gothenburg.
  • Handle: RePEc:hhs:gunefd:2018_008
    as

    Download full text from publisher

    File URL: https://www.efdinitiative.org/sites/default/files/publications/efd_disc_eth_climate-smart_agricultural_practices_and_welfare.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Teklewold, Hailemariam & Kassie, Menale & Shiferaw, Bekele & Köhlin, Gunnar, 2013. "Cropping system diversification, conservation tillage and modern seed adoption in Ethiopia: Impacts on household income, agrochemical use and demand for labor," Ecological Economics, Elsevier, vol. 93(C), pages 85-93.
    2. Hailemariam Teklewold & Menale Kassie & Bekele Shiferaw, 2013. "Adoption of Multiple Sustainable Agricultural Practices in Rural Ethiopia," Journal of Agricultural Economics, Wiley Blackwell, vol. 64(3), pages 597-623, September.
    3. Menale Kassie & Precious Zikhali & John Pender & Gunnar Köhlin, 2010. "The Economics of Sustainable Land Management Practices in the Ethiopian Highlands," Journal of Agricultural Economics, Wiley Blackwell, vol. 61(3), pages 605-627, September.
    4. Akhter Ali & Awudu Abdulai, 2010. "The Adoption of Genetically Modified Cotton and Poverty Reduction in Pakistan," Journal of Agricultural Economics, Wiley Blackwell, vol. 61(1), pages 175-192, February.
    5. Hailemariam Teklewold & Alemu Mekonnen & Gunnar Kohlin & Salvatore Di Falco, 2017. "Does Adoption Of Multiple Climate-Smart Practices Improve Farmers’ Climate Resilience? Empirical Evidence From The Nile Basin Of Ethiopia," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(01), pages 1-30, February.
    6. Vandercasteelen, Joachim & Dereje, Mekdim & Minten, Bart & Taffesse, Alemayehu Seyoum, 2013. "Scaling-up adoption of improved technologies: The impact of the promotion of row planting on farmers’ teff yields in Ethiopia:," ESSP working papers 60, International Food Policy Research Institute (IFPRI).
    7. Scott Brave & Thomas Walstrum, 2014. "Estimating marginal treatment effects using parametric and semiparametric methods," Stata Journal, StataCorp LP, vol. 14(1), pages 191-217, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fentie, Amare & Beyene, Abebe D., 2019. "Climate-smart agricultural practices and welfare of rural smallholders in Ethiopia: Does planting method matter?," Land Use Policy, Elsevier, vol. 85(C), pages 387-396.
    2. Martey, Edward & Etwire, Prince Maxwell & Abdoulaye, Tahirou, 2020. "Welfare impacts of climate-smart agriculture in Ghana: Does row planting and drought-tolerant maize varieties matter?," Land Use Policy, Elsevier, vol. 95(C).
    3. Wilckyster Nyateko Nyarindo & Amin Mugera & Atakelty Hailu & Gideon Aiko Obare, 2024. "Do combined sustainable agricultural intensification practices improve smallholder farmers welfare? Evidence from eastern and western Kenya," Agricultural Economics, International Association of Agricultural Economists, vol. 55(2), pages 296-312, March.
    4. Michler, Jeffrey D. & Baylis, Kathy & Arends-Kuenning, Mary & Mazvimavi, Kizito, 2019. "Conservation agriculture and climate resilience," Journal of Environmental Economics and Management, Elsevier, vol. 93(C), pages 148-169.
    5. Kim, Jongwoo & Mason, Nicole M. & Snapp, Sieglinde S., 2018. "Does sustainable intensification of maize production enhance child nutrition? Evidence from rural Tanzania," 2018 Annual Meeting, August 5-7, Washington, D.C. 273906, Agricultural and Applied Economics Association.
    6. Teklewold, Hailemariam & Mekonnen, Alemu, 2017. "The Tilling of Land in a Changing Climate: Panel Data Evidence from the Nile Basin of Ethiopia," EfD Discussion Paper 17-3, Environment for Development, University of Gothenburg.
    7. Ndiritu, S. Wagura & Kassie, Menale & Shiferaw, Bekele, 2014. "Are there systematic gender differences in the adoption of sustainable agricultural intensification practices? Evidence from Kenya," Food Policy, Elsevier, vol. 49(P1), pages 117-127.
    8. Momanyi, Denis & Lagat, Prof. Job K. & Ayuya, Dr. Oscar I., 2016. "Analysis of the Marketing Behaviour of African Indigenous Leafy Vegetables among Smallholder Farmers in Nyamira County, Kenya," MPRA Paper 69202, University Library of Munich, Germany, revised 27 Jan 2016.
    9. Verena Preusse & Nils Nölke & Meike Wollni, 2024. "Urbanization and adoption of sustainable agricultural practices in the rural‐urban interface of Bangalore, India," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 72(2), pages 167-198, June.
    10. Teklewold, Hailemariam & Kassie, Menale & Shiferaw, Bekele & Köhlin, Gunnar, 2013. "Cropping system diversification, conservation tillage and modern seed adoption in Ethiopia: Impacts on household income, agrochemical use and demand for labor," Ecological Economics, Elsevier, vol. 93(C), pages 85-93.
    11. Song, Chunxiao & Liu, Ruifeng & Oxley, Oxley & Ma, Hengyun, 2018. "The adoption and impact of engineering-type measures to address climate change: evidence from the major grain-producing areas in China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(4), October.
    12. Beyene, Abebe D. & Mekonnen, Alemu & Kassie, Menale & Di Falco, Salvatore & Bezabih, Mintewab, 2017. "Determinants of Adoption and Impacts of Sustainable Land Management and Climate Smart Agricultural Practices (SLM-CSA): Panel Data Evidence from the Ethiopian Highlands," EfD Discussion Paper 17-10, Environment for Development, University of Gothenburg.
    13. Musa Hasen Ahmed & Kassahun Mamo Geleta & Aemro Tazeze & Hiwot Mekonnen Mesfin & Eden Andualem Tilahun, 2017. "Cropping systems diversification, improved seed, manure and inorganic fertilizer adoption by maize producers of eastern Ethiopia," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 6(1), pages 1-16, December.
    14. Hassen, Sied, 2018. "The effect of farmyard manure on the continued and discontinued use of inorganic fertilizer in Ethiopia: An ordered probit analysis," Land Use Policy, Elsevier, vol. 72(C), pages 523-532.
    15. Dan Pan, 2014. "The Impact of Agricultural Extension on Farmer Nutrient Management Behavior in Chinese Rice Production: A Household-Level Analysis," Sustainability, MDPI, vol. 6(10), pages 1-22, September.
    16. repec:ags:aaea22:335656 is not listed on IDEAS
    17. Paudel, G. & Krishna, V. & McDonald, A., 2018. "Why some inferior technologies succeed? Examining the diffusion and impacts of rotavator tillage in Nepal Terai," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277149, International Association of Agricultural Economists.
    18. Kassie, Menale & Teklewolde, Hailemariam & Erenstein, Olaf & Jaleta, Moti & Marenya, Paswel & Mekurai, Mulugetta, 2015. "Technology diversification: Assessing impacts on crop income and agrochemical uses in Malawi," 2015 Conference, August 9-14, 2015, Milan, Italy 211838, International Association of Agricultural Economists.
    19. Gebremariam, Gebrelibanos & Tesfaye, Wondimagegn, 2018. "The heterogeneous effect of shocks on agricultural innovations adoption: Microeconometric evidence from rural Ethiopia," Food Policy, Elsevier, vol. 74(C), pages 154-161.
    20. Abdul-Hanan Abdallah & Awal Abdul-Rahaman & Gazali Issahaku, 2021. "Sustainable agricultural practices, farm income and food security among rural households in Africa," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17668-17701, December.
    21. Solomon Asfaw & Nancy McCarthy & Leslie Lipper & Aslihan Arslan & Andrea Cattaneo, 2016. "What determines farmers’ adaptive capacity? Empirical evidence from Malawi," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(3), pages 643-664, June.

    More about this item

    Keywords

    row planting; Quncho Teff; Propensity Score Matching; semi-parametric LIV model.;
    All these keywords.

    JEL classification:

    • Q16 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - R&D; Agricultural Technology; Biofuels; Agricultural Extension Services
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q56 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environment and Development; Environment and Trade; Sustainability; Environmental Accounts and Accounting; Environmental Equity; Population Growth

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:gunefd:2018_008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Franklin Amuakwa-Mensah (email available below). General contact details of provider: https://www.efdinitiative.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.