IDEAS home Printed from https://ideas.repec.org/p/hhs/cbsfin/2004_004.html
   My bibliography  Save this paper

Upper Bounds on Numerical Approximation Errors

Author

Listed:
  • Raahauge, Peter

    (Department of Finance, Copenhagen Business School)

Abstract

This paper suggests a method for determining rigorous upper bounds on approximation errors of numerical solutions to infinite horizon dynamic programming models. Bounds are provided for approximations of the value function and the policy function as well as the derivatives of the value function. The bounds apply to more general problems than existing bounding methods do. For instance, since strict concavity is not required, linear models and piecewise linear approximations can be dealt with. Despite the generality, the bounds perform well in comparison with existing methods even when applied to approximations of a standard(strictly concave)growth model.

Suggested Citation

  • Raahauge, Peter, 2006. "Upper Bounds on Numerical Approximation Errors," Working Papers 2004-4, Copenhagen Business School, Department of Finance.
  • Handle: RePEc:hhs:cbsfin:2004_004
    as

    Download full text from publisher

    File URL: http://openarchive.cbs.dk/cbsweb/handle/10398/7171
    Download Restriction: no

    References listed on IDEAS

    as
    1. Taylor, John B & Uhlig, Harald, 1990. "Solving Nonlinear Stochastic Growth Models: A Comparison of Alternative Solution Methods," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(1), pages 1-17, January.
    2. Wilfredo Leiva Maldonado & Benar Fux Svaiter, 2001. "On the accuracy of the estimated policy function using the Bellman contraction method," Economics Bulletin, AccessEcon, vol. 3(15), pages 1-8.
    3. Christiano, Lawrence J. & Fisher, Jonas D. M., 2000. "Algorithms for solving dynamic models with occasionally binding constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 24(8), pages 1179-1232, July.
    4. Manuel S. Santos & Jesus Vigo-Aguiar, 1998. "Analysis of a Numerical Dynamic Programming Algorithm Applied to Economic Models," Econometrica, Econometric Society, vol. 66(2), pages 409-426, March.
    5. Wouter J. Den Haan & Albert Marcet, 1994. "Accuracy in Simulations," Review of Economic Studies, Oxford University Press, vol. 61(1), pages 3-17.
    6. Manuel S. Santos, 2000. "Accuracy of Numerical Solutions using the Euler Equation Residuals," Econometrica, Econometric Society, vol. 68(6), pages 1377-1402, November.
    7. Judd, Kenneth L., 1992. "Projection methods for solving aggregate growth models," Journal of Economic Theory, Elsevier, vol. 58(2), pages 410-452, December.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Numerical approximation errors; Bellman contractions; Error bounds;

    JEL classification:

    • G00 - Financial Economics - - General - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:cbsfin:2004_004. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lars Nondal). General contact details of provider: http://edirc.repec.org/data/cbschdk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.