IDEAS home Printed from https://ideas.repec.org/p/han/dpaper/dp-661.html
   My bibliography  Save this paper

The Memory of Beta Factors

Author

Listed:
  • Becker, Janis
  • Hollstein, Fabian
  • Prokopczuk, Marcel
  • Sibbertsen, Philipp

Abstract

Researchers and practitioners employ a variety of time-series processes to forecast betas, using either short-memory models or implicitly imposing infinite memory. We find that both approaches are inadequate: beta factors show consistent long-memory properties. For the vast majority of stocks, we reject both the short-memory and difference-stationary (random walk) alternatives. A pure long-memory model reliably provides superior beta forecasts compared to all alternatives. Finally, we document the relation of firm characteristics with the forecast error differentials that result from inadequately imposing short-memory or random walk instead of long-memory processes.

Suggested Citation

  • Becker, Janis & Hollstein, Fabian & Prokopczuk, Marcel & Sibbertsen, Philipp, 2019. "The Memory of Beta Factors," Hannover Economic Papers (HEP) dp-661, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
  • Handle: RePEc:han:dpaper:dp-661
    as

    Download full text from publisher

    File URL: http://diskussionspapiere.wiwi.uni-hannover.de/pdf_bib/dp-661.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Pagan, Adrian, 1980. "Some identification and estimation results for regression models with stochastically varying coefficients," Journal of Econometrics, Elsevier, vol. 13(3), pages 341-363, August.
    2. Fama, Eugene F & French, Kenneth R, 1992. " The Cross-Section of Expected Stock Returns," Journal of Finance, American Finance Association, vol. 47(2), pages 427-465, June.
    3. John Geweke & Susan Porter‐Hudak, 1983. "The Estimation And Application Of Long Memory Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 221-238, July.
    4. X. Frank Zhang, 2006. "Information Uncertainty and Stock Returns," Journal of Finance, American Finance Association, vol. 61(1), pages 105-137, February.
    5. Frederiksen, Per & Nielsen, Frank S. & Nielsen, Morten Ørregaard, 2012. "Local polynomial Whittle estimation of perturbed fractional processes," Journal of Econometrics, Elsevier, vol. 167(2), pages 426-447.
    6. Marc Lavielle & Eric Moulines, 2000. "Least‐squares Estimation of an Unknown Number of Shifts in a Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(1), pages 33-59, January.
    7. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    8. Liu, Jianan & Stambaugh, Robert F. & Yuan, Yu, 2018. "Absolving beta of volatility’s effects," Journal of Financial Economics, Elsevier, vol. 128(1), pages 1-15.
    9. Black, A. & Fraser, P. & Power, D., 1992. "UK unit trust performance 1980-1989: A passive time-varying approach," Journal of Banking & Finance, Elsevier, vol. 16(5), pages 1015-1033, September.
    10. Fulvio Corsi, 2009. "A Simple Approximate Long-Memory Model of Realized Volatility," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 7(2), pages 174-196, Spring.
    11. Bhandari, Laxmi Chand, 1988. " Debt/Equity Ratio and Expected Common Stock Returns: Empirical Evidence," Journal of Finance, American Finance Association, vol. 43(2), pages 507-528, June.
    12. Clifford M. Hurvich & Eric Moulines & Philippe Soulier, 2005. "Estimating Long Memory in Volatility," Econometrica, Econometric Society, vol. 73(4), pages 1283-1328, July.
    13. Banz, Rolf W., 1981. "The relationship between return and market value of common stocks," Journal of Financial Economics, Elsevier, vol. 9(1), pages 3-18, March.
    14. Shimotsu, Katsumi, 2010. "Exact Local Whittle Estimation Of Fractional Integration With Unknown Mean And Time Trend," Econometric Theory, Cambridge University Press, vol. 26(2), pages 501-540, April.
    15. Dissanayake, G.S. & Peiris, M.S. & Proietti, T., 2016. "State space modeling of Gegenbauer processes with long memory," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 115-130.
    16. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    17. Fabrizio Iacone, 2010. "Local Whittle estimation of the memory parameter in presence of deterministic components," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(1), pages 37-49, January.
    18. Andrew Ang & Robert J. Hodrick & Yuhang Xing & Xiaoyan Zhang, 2006. "The Cross‐Section of Volatility and Expected Returns," Journal of Finance, American Finance Association, vol. 61(1), pages 259-299, February.
    19. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    20. Levi, Yaron & Welch, Ivo, 2017. "Best Practice for Cost-of-Capital Estimates," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 52(2), pages 427-463, April.
    21. Vasicek, Oldrich A, 1973. "A Note on Using Cross-Sectional Information in Bayesian Estimation of Security Betas," Journal of Finance, American Finance Association, vol. 28(5), pages 1233-1239, December.
    22. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    23. Boehme, Rodney D. & Danielsen, Bartley R. & Sorescu, Sorin M., 2006. "Short-Sale Constraints, Differences of Opinion, and Overvaluation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 41(2), pages 455-487, June.
    24. Hou, Jie & Perron, Pierre, 2014. "Modified local Whittle estimator for long memory processes in the presence of low frequency (and other) contaminations," Journal of Econometrics, Elsevier, vol. 182(2), pages 309-328.
    25. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. " Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Long memory; beta; persistence; forecasting; predictability;

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:han:dpaper:dp-661. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Heidrich, Christian). General contact details of provider: http://edirc.repec.org/data/fwhande.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.