IDEAS home Printed from https://ideas.repec.org/p/hal/wptree/hal-04119625.html
   My bibliography  Save this paper

Prosumers: Grid Storage vs Small Fuel-Cell

Author

Listed:
  • Sai Bravo

    (ENAC - Ecole Nationale de l'Aviation Civile)

  • Carole Haritchabalet

    (TREE - Transitions Energétiques et Environnementales - UPPA - Université de Pau et des Pays de l'Adour - CNRS - Centre National de la Recherche Scientifique)

Abstract

The number of prosumers-consumers equipped with decentralized production-is expected to increase following the revised Renewable Energy Directive (2018/2001) and the rising energy prices. The economic literature suggests there is room for demand-side storage that can take two forms: decentralized or centralized. The schemes promoting investments in solar capacity physically allow for only one type of demand-side storage. One may wonder about the conditions under which consumers invest in different technologies. We build a stylized microeconomic model of the energy market and perform a numerical evaluation, using publicly available data from France, to compare two regulations-price and quantity-from our representative consumer's and the Distributed System Operator's points of view. The two energy regulations lead to three types of profiles: consumers, prosumers, and storers. These profiles are in line with previous studies focusing on price regulation. With quantity regulation, a grid tariff such that consumers invest in storage depends on endogenous parameters. The results suggest that with the current price regulation in France, only a smaller feed-in-tariff would encourage investments in decentralized hydrogen-based storage. A grid tariff such that consumers inject energy into the grid would not reflect the cost of centralized hydrogen-based storage. However, a quantity regulation would be less costly to support.

Suggested Citation

  • Sai Bravo & Carole Haritchabalet, 2023. "Prosumers: Grid Storage vs Small Fuel-Cell," Working papers of Transitions Energétiques et Environnementales (TREE) hal-04119625, HAL.
  • Handle: RePEc:hal:wptree:hal-04119625
    Note: View the original document on HAL open archive server: https://hal.science/hal-04119625v2
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04119625v2/document
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Axel Gautier & Julien Jacqmin & Jean-Christophe Poudou, 2018. "The prosumers and the grid," Journal of Regulatory Economics, Springer, vol. 53(1), pages 100-126, February.
    2. Wolf-Peter Schill, Alexander Zerrahn, and Friedrich Kunz, 2017. "Prosumage of solar electricity: pros, cons, and the system perspective," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    3. Boampong, Richard & Brown, David P., 2020. "On the benefits of behind-the-meter rooftop solar and energy storage: The importance of retail rate design," Energy Economics, Elsevier, vol. 86(C).
    4. Natalia Fabra & David Rapson & Mar Reguant & Jingyuan Wang, 2021. "Estimating the Elasticity to Real-Time Pricing: Evidence from the Spanish Electricity Market," AEA Papers and Proceedings, American Economic Association, vol. 111, pages 425-429, May.
    5. Lang, Tillmann & Ammann, David & Girod, Bastien, 2016. "Profitability in absence of subsidies: A techno-economic analysis of rooftop photovoltaic self-consumption in residential and commercial buildings," Renewable Energy, Elsevier, vol. 87(P1), pages 77-87.
    6. Severin Borenstein & Stephen Holland, 2005. "On the Efficiency of Competitive Electricity Markets with Time-Invariant Retail Prices," RAND Journal of Economics, The RAND Corporation, vol. 36(3), pages 469-493, Autumn.
    7. Stefan Ambec & Claude Crampes, 2019. "Decarbonizing Electricity Generation with Intermittent Sources of Energy," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 6(6), pages 1105-1134.
    8. Lamp, Stefan & Samano, Mario, 2022. "Large-scale battery storage, short-term market outcomes, and arbitrage," Energy Economics, Elsevier, vol. 107(C).
    9. Gautier, Axel & Jacqmin, Julien & Poudou, Jean-Christophe, 2021. "Optimal grid tariffs with heterogeneous prosumers," Utilities Policy, Elsevier, vol. 68(C).
    10. Dato, Prudence & Durmaz, Tunç & Pommeret, Aude, 2020. "Smart grids and renewable electricity generation by households," Energy Economics, Elsevier, vol. 86(C).
    11. David Andrés‐Cerezo & Natalia Fabra, 2023. "Storing power: market structure matters," RAND Journal of Economics, RAND Corporation, vol. 54(1), pages 3-53, March.
    12. R. Andrew Butters & Jackson Dorsey & Gautam Gowrisankaran, 2021. "Soaking Up the Sun: Battery Investment, Renewable Energy, and Market Equilibrium," NBER Working Papers 29133, National Bureau of Economic Research, Inc.
    13. Carsten Helm & Mathias Mier, 2018. "Subsidising Renewables but Taxing Storage? Second-Best Policies with Imperfect Pricing," Working Papers V-413-18, University of Oldenburg, Department of Economics, revised Oct 2018.
    14. Jean-Christophe Poudou & Axel Gautier & Julien Jacqmin, 2018. "The prosumers and the grid," Post-Print hal-01810028, HAL.
    15. Tunç Durmaz & Aude Pommeret & Ian Ridley, 2017. "Willingness to Pay for Solar Panels and Smart Grids," Working Papers 2017.24, Fondazione Eni Enrico Mattei.
    16. Andreolli, Francesca & D’Alpaos, Chiara & Moretto, Michele, 2022. "Valuing investments in domestic PV-Battery Systems under uncertainty," Energy Economics, Elsevier, vol. 106(C).
    17. Severin Borenstein, 2005. "The Long-Run Efficiency of Real-Time Electricity Pricing," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 93-116.
    18. Antweiler, Werner, 2021. "Microeconomic models of electricity storage: Price Forecasting, arbitrage limits, curtailment insurance, and transmission line utilization," Energy Economics, Elsevier, vol. 101(C).
    19. Sioshansi, Ramteen & Denholm, Paul & Jenkin, Thomas & Weiss, Jurgen, 2009. "Estimating the value of electricity storage in PJM: Arbitrage and some welfare effects," Energy Economics, Elsevier, vol. 31(2), pages 269-277, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sai Bravo & Carole Haritchabalet, 2023. "Prosumers: Grid Storage vs Small Fuel-Cell," Working Papers hal-04119625, HAL.
    2. Fabra, Natalia, 2021. "The energy transition: An industrial economics perspective," International Journal of Industrial Organization, Elsevier, vol. 79(C).
    3. Lamp, Stefan & Samano, Mario, 2022. "Large-scale battery storage, short-term market outcomes, and arbitrage," Energy Economics, Elsevier, vol. 107(C).
    4. Boampong, Richard & Brown, David P., 2020. "On the benefits of behind-the-meter rooftop solar and energy storage: The importance of retail rate design," Energy Economics, Elsevier, vol. 86(C).
    5. Ahmed S. Alahmed & Lang Tong, 2022. "Integrating Distributed Energy Resources: Optimal Prosumer Decisions and Impacts of Net Metering Tariffs," Papers 2204.06115, arXiv.org, revised May 2022.
    6. Hashemi, Majid & Jenkins, Glenn & Milne, Frank, 2023. "Rooftop solar with net metering: An integrated investment appraisal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    7. Gautier, Axel & Jacqmin, Julien & Poudou, Jean-Christophe, 2021. "Optimal grid tariffs with heterogeneous prosumers," Utilities Policy, Elsevier, vol. 68(C).
    8. Ambec, Stefan & Crampes, Claude, 2021. "Real-time electricity pricing to balance green energy intermittency," Energy Economics, Elsevier, vol. 94(C).
    9. Axel Gautier & Julien Jacqmin & Jean-Christophe Poudou, 2023. "The Energy Community and the Grid," Working Papers hal-04032253, HAL.
    10. Javier L'opez Prol & Wolf-Peter Schill, 2020. "The Economics of Variable Renewables and Electricity Storage," Papers 2012.15371, arXiv.org.
    11. Spiller, Elisheba & Esparza, Ricardo & Mohlin, Kristina & Tapia-Ahumada, Karen & Ünel, Burçin, 2023. "The role of electricity tariff design in distributed energy resource deployment," Energy Economics, Elsevier, vol. 120(C).
    12. Andreolli, Francesca & D’Alpaos, Chiara & Moretto, Michele, 2022. "Valuing investments in domestic PV-Battery Systems under uncertainty," Energy Economics, Elsevier, vol. 106(C).
    13. Alexander Haupt, 2023. "Environmental Policy and Renewable Energy in an Imperfectly Competitive Market," CESifo Working Paper Series 10524, CESifo.
    14. Carsten Helm & Mathias Mier, 2020. "Steering the Energy Transition in a World of Intermittent Electricity Supply: Optimal Subsidies and Taxes for Renewables Storage," ifo Working Paper Series 330, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    15. Brown, David P. & Muehlenbachs, Lucija, 2023. "The Value of Electricity Reliability: Evidence from Battery Adoption," Working Papers 2023-5, University of Alberta, Department of Economics.
    16. Mattias Vesterberg and Chandra Kiran B. Krishnamurthy, 2016. "Residential End-use Electricity Demand: Implications for Real Time Pricing in Sweden," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    17. Antweiler, Werner & Muesgens, Felix, 2024. "The new merit order: The viability of energy-only electricity markets with only intermittent renewable energy sources and grid-scale storage," Ruhr Economic Papers 1064, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    18. Helm, Carsten & Mier, Mathias, 2021. "Steering the energy transition in a world of intermittent electricity supply: Optimal subsidies and taxes for renewables and storage," Journal of Environmental Economics and Management, Elsevier, vol. 109(C).
    19. Graff Zivin, Joshua S. & Kotchen, Matthew J. & Mansur, Erin T., 2014. "Spatial and temporal heterogeneity of marginal emissions: Implications for electric cars and other electricity-shifting policies," Journal of Economic Behavior & Organization, Elsevier, vol. 107(PA), pages 248-268.
    20. Michele Fioretti & Jorge Tamayo, 2021. "Saving for a Dry Day: Coal, Dams, and the Energy Transition," Working Papers hal-03389152, HAL.

    More about this item

    Keywords

    Renewable Energy; Storage; Decentralized Production; Hydrogen;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wptree:hal-04119625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CATT - UPPA - Université de Pau et des Pays de l'Adour (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.