IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/halshs-01982243.html
   My bibliography  Save this paper

Distributed Optimal Control Models in Environmental Economics: A Review

Author

Listed:
  • Emmanuelle Augeraud-Véron

    (GREThA - Groupe de Recherche en Economie Théorique et Appliquée - UB - Université de Bordeaux - CNRS - Centre National de la Recherche Scientifique)

  • Raouf Boucekkine

    (AMSE - Aix-Marseille Sciences Economiques - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique, IMéRA - Institute for Advanced Studies - Aix-Marseille University, IUF - Institut Universitaire de France - M.E.N.E.S.R. - Ministère de l'Education nationale, de l’Enseignement supérieur et de la Recherche)

  • Vladimir Veliov

    (ORCOS, Vienna University of Technology)

Abstract

We review the most recent advances in distributed optimal control applied to environmental economics, covering in particular problems where the state dynamics are governed by partial differential equations (PDEs). This is a quite fresh application area of distributed optimal control, which has already suggested several new mathematical research lines due to the specificities of the environmental economics problems involved. We enhance the latter through a survey of the variety of themes and associated mathematical structures beared by this literature. We also provide a quick tour of the existing tools in the theory of distributed optimal control that have been applied so far in environmental economics.

Suggested Citation

  • Emmanuelle Augeraud-Véron & Raouf Boucekkine & Vladimir Veliov, 2019. "Distributed Optimal Control Models in Environmental Economics: A Review," Working Papers halshs-01982243, HAL.
  • Handle: RePEc:hal:wpaper:halshs-01982243
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-01982243
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-01982243/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Mariani, Fabio & Pérez-Barahona, Agustín & Raffin, Natacha, 2010. "Life expectancy and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 798-815, April.
    2. Boucekkine, R. & Camacho, C. & Fabbri, G., 2013. "Spatial dynamics and convergence: The spatial AK model," Journal of Economic Theory, Elsevier, vol. 148(6), pages 2719-2736.
    3. R. M. Adams & S. A. Hamilton & B. A. McCarl, 1986. "The Benefits of Pollution Control: The Case of Ozone and U.S. Agriculture," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 68(4), pages 886-893.
    4. V. Barbu & M. Iannelli, 1999. "Optimal Control of Population Dynamics," Journal of Optimization Theory and Applications, Springer, vol. 102(1), pages 1-14, July.
    5. Faggian, Silvia & Gozzi, Fausto, 2010. "Optimal investment models with vintage capital: Dynamic programming approach," Journal of Mathematical Economics, Elsevier, vol. 46(4), pages 416-437, July.
    6. Camacho, Carmen & Pérez-Barahona, Agustín, 2015. "Land use dynamics and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 96-118.
    7. Emilio Barucci & Fausto Gozzi, 2001. "Technology adoption and accumulation in a vintage-capital model," Journal of Economics, Springer, vol. 74(1), pages 1-38, February.
    8. Ballestra, Luca Vincenzo, 2016. "The spatial AK model and the Pontryagin maximum principle," Journal of Mathematical Economics, Elsevier, vol. 67(C), pages 87-94.
    9. Raouf Boucekkine & Giorgio Fabbri & Salvatore Federico & Fausto Gozzi, 2019. "Growth and agglomeration in the heterogeneous space: a generalized AK approach," Journal of Economic Geography, Oxford University Press, vol. 19(6), pages 1287-1318.
    10. Fabio Mariani & Agustin Perez Barahona & Natacha Raffin, 2010. "Life expectancy and the environment," Post-Print hal-00638730, HAL.
    11. Gustav Feichtinger & Vladimir Veliov & Tsvetomir Tsachev, 2004. "Maximum Principle For Age And Duration Structured Systems: A Tool For Optimal Prevention And Treatment Of Hiv," Mathematical Population Studies, Taylor & Francis Journals, vol. 11(1), pages 3-28.
    12. Emmanuelle Augeraud Veron & Catherine Choquet & Eloïse Comte, 2018. "Existence, uniqueness and asymptotic analysis of optimal control problems for a model of groundwater pollution," Post-Print hal-03145766, HAL.
    13. Raouf Boucekkine & Carmen Camacho & Giorgio Fabbri, 2013. "On the Optimal Control of Some Parabolic Partial Differential Equations Arising in Economics," AMSE Working Papers 1334, Aix-Marseille School of Economics, France, revised 05 Jun 2013.
    14. Mossay, Pascal, 2003. "Increasing returns and heterogeneity in a spatial economy," Regional Science and Urban Economics, Elsevier, vol. 33(4), pages 419-444, July.
    15. HALKIN, Hubert, 1974. "Necessary conditions for optimal control problems with infinite horizons," LIDAM Reprints CORE 193, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    16. Anton O. Belyakov & Vladimir M. Veliov, 2016. "On Optimal Harvesting in Age-Structured Populations," Dynamic Modeling and Econometrics in Economics and Finance, in: Herbert Dawid & Karl F. Doerner & Gustav Feichtinger & Peter M. Kort & Andrea Seidl (ed.), Dynamic Perspectives on Managerial Decision Making, pages 149-166, Springer.
    17. BOUCEKKINE, Raouf & FABBRI, Giorgio & PINTUS, Patrick, 2012. "On the optimal control of a linear neutral differential equation arising in economics," LIDAM Reprints CORE 2449, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    18. B. Skritek & V. M. Veliov, 2015. "On the Infinite-Horizon Optimal Control of Age-Structured Systems," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 243-271, October.
    19. Fujita,Masahisa & Thisse,Jacques-François, 2013. "Economics of Agglomeration," Cambridge Books, Cambridge University Press, number 9781107001411.
    20. W.A. Brock & A. Xepapadeas & A.N. Yannacopoulos, 2014. "Optimal Control in Space and Time and the Management of Environmental Resources," Annual Review of Resource Economics, Annual Reviews, vol. 6(1), pages 33-68, October.
    21. Fabbri, Giorgio, 2016. "Geographical structure and convergence: A note on geometry in spatial growth models," Journal of Economic Theory, Elsevier, vol. 162(C), pages 114-136.
    22. Boucekkine, R. & Fabbri, G. & Gozzi, F., 2014. "Egalitarianism under population change: Age structure does matter," Journal of Mathematical Economics, Elsevier, vol. 55(C), pages 86-100.
    23. Paulo B. Brito, 2022. "The dynamics of growth and distribution in a spatially heterogeneous world," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 21(3), pages 311-350, September.
    24. Raouf Boucekkine & Carmen Camacho & Giorgio Fabbri, 2013. "On the optimal control of some parabolic differential equations arising in economics," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-01498240, HAL.
    25. Behringer, Stefan & Upmann, Thorsten, 2014. "Optimal harvesting of a spatial renewable resource," Journal of Economic Dynamics and Control, Elsevier, vol. 42(C), pages 105-120.
    26. Fabio Mariani & Agustin Perez Barahona & Natacha Raffin, 2010. "Life expectancy and the environment," PSE-Ecole d'économie de Paris (Postprint) hal-00638730, HAL.
    27. Pascal Mossay, 2003. "Increasing Returns And Heterogeneity In A Spatial Economy," Working Papers. Serie AD 2003-04, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
    28. Golubtsov, Peter & Steinshamn, Stein Ivar, 2019. "Analytical and numerical investigation of optimal harvest with a continuously age-structured model," Ecological Modelling, Elsevier, vol. 392(C), pages 67-81.
    29. Fabbri, Giorgio & Gozzi, Fausto, 2008. "Solving optimal growth models with vintage capital: The dynamic programming approach," Journal of Economic Theory, Elsevier, vol. 143(1), pages 331-373, November.
    30. Emmanuelle Augeraud-Véron & Catherine Choquet & Éloïse Comte, 2017. "Optimal Control for a Groundwater Pollution Ruled by a Convection–Diffusion–Reaction Problem," Journal of Optimization Theory and Applications, Springer, vol. 173(3), pages 941-966, June.
    31. Halkin, Hubert, 1974. "Necessary Conditions for Optimal Control Problems with Infinite Horizons," Econometrica, Econometric Society, vol. 42(2), pages 267-272, March.
    32. Nico Tauchnitz, 2015. "The Pontryagin Maximum Principle for Nonlinear Optimal Control Problems with Infinite Horizon," Journal of Optimization Theory and Applications, Springer, vol. 167(1), pages 27-48, October.
    33. Giorgio Fabbri & Fausto Gozzi & Andrzej Swiech, 2017. "Stochastic Optimal Control in Infinite Dimensions - Dynamic Programming and HJB Equations," Post-Print hal-01505767, HAL.
    34. Mariani, Fabio & Pérez-Barahona, Agustín & Raffin, Natacha, 2010. "Life expectancy and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 34(4), pages 798-815, April.
    35. Brock, William & Xepapadeas, Anastasios, 2008. "Diffusion-induced instability and pattern formation in infinite horizon recursive optimal control," Journal of Economic Dynamics and Control, Elsevier, vol. 32(9), pages 2745-2787, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paulo B. Brito, 2022. "The dynamics of growth and distribution in a spatially heterogeneous world," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 21(3), pages 311-350, September.
    2. Boucekkine, Raouf & Fabbri, Giorgio & Federico, Salvatore & Gozzi, Fausto, 2022. "Managing spatial linkages and geographic heterogeneity in dynamic models with transboundary pollution," Journal of Mathematical Economics, Elsevier, vol. 98(C).
    3. Raouf Boucekkine & Giorgio Fabbri & Salvatore Federico & Fausto Gozzi, 2019. "A spatiotemporal framework for the analytical study of optimal growth under transboundary pollution," LIDAM Discussion Papers IRES 2019016, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    4. Galioto, Francesco & Battilani, Adriano, 2021. "Agro-economic simulation for day by day irrigation scheduling optimisation," Agricultural Water Management, Elsevier, vol. 248(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xepapadeas, Anastasios & Yannacopoulos, Athanasios N., 2023. "Spatial growth theory: Optimality and spatial heterogeneity," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    2. de Frutos, Javier & Martín-Herrán, Guiomar, 2019. "Spatial vs. non-spatial transboundary pollution control in a class of cooperative and non-cooperative dynamic games," European Journal of Operational Research, Elsevier, vol. 276(1), pages 379-394.
    3. Raouf Boucekkine & Giorgio Fabbri & Salvatore Federico & Fausto Gozzi, 2019. "Growth and agglomeration in the heterogeneous space: a generalized AK approach," Journal of Economic Geography, Oxford University Press, vol. 19(6), pages 1287-1318.
    4. Boucekkine, Raouf & Fabbri, Giorgio & Federico, Salvatore & Gozzi, Fausto, 2022. "A dynamic theory of spatial externalities," Games and Economic Behavior, Elsevier, vol. 132(C), pages 133-165.
    5. Paulo B. Brito, 2022. "The dynamics of growth and distribution in a spatially heterogeneous world," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 21(3), pages 311-350, September.
    6. Camacho, Carmen & Pérez-Barahona, Agustín, 2015. "Land use dynamics and the environment," Journal of Economic Dynamics and Control, Elsevier, vol. 52(C), pages 96-118.
    7. Faggian, Silvia & Gozzi, Fausto & Kort, Peter M., 2021. "Optimal investment with vintage capital: Equilibrium distributions," Journal of Mathematical Economics, Elsevier, vol. 96(C).
    8. Raouf Boucekkine & Giorgio Fabbri & Salvatore Federico & Fausto Gozzi, 2019. "A Spatiotemporal Framework for the Analytical Study of Optimal Growth Under Transboundary Pollution," Department of Economics University of Siena 813, Department of Economics, University of Siena.
    9. Ballestra, Luca Vincenzo, 2016. "The spatial AK model and the Pontryagin maximum principle," Journal of Mathematical Economics, Elsevier, vol. 67(C), pages 87-94.
    10. Boucekkine, Raouf & Fabbri, Giorgio & Federico, Salvatore & Gozzi, Fausto, 2022. "Managing spatial linkages and geographic heterogeneity in dynamic models with transboundary pollution," Journal of Mathematical Economics, Elsevier, vol. 98(C).
    11. Torre, Davide La & Liuzzi, Danilo & Marsiglio, Simone, 2021. "Transboundary pollution externalities: Think globally, act locally?," Journal of Mathematical Economics, Elsevier, vol. 96(C).
    12. Raouf Boucekkine & Giorgio Fabbri & Salvatore Federico & Fausto Gozzi, 2020. "A dynamic theory of spatial externalities," Working Papers halshs-02613177, HAL.
    13. Spyridon Tsangaris & Anastasios Xepapadeas & Athanasios Yannacopoulos, 2022. "Spatial externalities, R&D spillovers, and endogenous technological change," DEOS Working Papers 2225, Athens University of Economics and Business.
    14. Giorgio FABBRI, 2014. "Ecological Barriers and Convergence: a Note on Geometry in Spatial Growth Models," LIDAM Discussion Papers IRES 2014014, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    15. Fabbri, Giorgio, 2016. "Geographical structure and convergence: A note on geometry in spatial growth models," Journal of Economic Theory, Elsevier, vol. 162(C), pages 114-136.
    16. Raouf Boucekkine & Giorgio Fabbri & Salvatore Federico & Fausto Gozzi, 2020. "Optimal location of economic activity and population density: The role of the social welfare function," AMSE Working Papers 2003, Aix-Marseille School of Economics, France.
    17. Javier de Frutos & Guiomar Martín-Herrán, 2016. "Pollution control in a multiregional setting: a differential game with spatially distributed controls," Gecomplexity Discussion Paper Series 201601, Action IS1104 "The EU in the new complex geography of economic systems: models, tools and policy evaluation", revised Jan 2016.
    18. Boucekkine, R. & Fabbri, G. & Federico, S. & Gozzi, F., 2020. "Control theory in infinite dimension for the optimal location of economic activity: The role of social welfare function," Working Papers 2020-02, Grenoble Applied Economics Laboratory (GAEL).
    19. Giorgio Fabbri, 2014. "Ecological Barriers and Convergence: A Note on Geometry in Spatial Growth Models," Documents de recherche 14-05, Centre d'Études des Politiques Économiques (EPEE), Université d'Evry Val d'Essonne.
    20. La Torre, Davide & Liuzzi, Danilo & Marsiglio, Simone, 2015. "Pollution diffusion and abatement activities across space and over time," Mathematical Social Sciences, Elsevier, vol. 78(C), pages 48-63.

    More about this item

    Keywords

    environmental economics; distributed systems; optimal control; partial differential equations;
    All these keywords.

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • Q50 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - General
    • Q57 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Ecological Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:halshs-01982243. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.