IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

A new approach for estimation of long-run relationships in economic analysis using Engle-Granger and artificial intelligence methods

  • Arshia Amiri


    (Department of Agricultural Economics - Shiraz University)

  • Ulf-G Gerdtham

    (Lund University - Lund University)

  • Bruno Ventelou


    (GREQAM - Groupement de Recherche en Économie Quantitative d'Aix-Marseille - Université de la Méditerranée - Aix-Marseille II - Université Paul Cézanne - Aix-Marseille III - Ecole des Hautes Etudes en Sciences Sociales (EHESS) - CNRS : UMR6579)

In time series analysis, most estimation of relationships and tests are typically based on linear estimators and most classical co-integration methods and causality tests are based on OLS regresses. However the linear functional specification is not necessarily the most appropriate form. This paper breaks the ordinary rules in econometrics and makes use of time series with artificial intelligence methods, testing for existence of nonlinear relationship. We illustrate the testing exercise using two examples based on OECD health data. In our illustration we confirm that improved nonlinear AEG and VEC, significantly, have a better ability to identify long run co-integration and causal relationships than ordinary linear ones. Ordinary methods and improved-nonlinear methods demonstrate similar results if the variables in a model are approximately linear.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
Download Restriction: no

Paper provided by HAL in its series Working Papers with number halshs-00606048.

in new window

Date of creation: 16 Jun 2012
Date of revision:
Handle: RePEc:hal:wpaper:halshs-00606048
Note: View the original document on HAL open archive server:
Contact details of provider: Web page:

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Selma J. Mushkin, 1962. "Health as an Investment," Journal of Political Economy, University of Chicago Press, vol. 70, pages 129.
  2. Gerdtham, Ulf-G. & Jonsson, Bengt, 2000. "International comparisons of health expenditure: Theory, data and econometric analysis," Handbook of Health Economics, in: A. J. Culyer & J. P. Newhouse (ed.), Handbook of Health Economics, edition 1, volume 1, chapter 1, pages 11-53 Elsevier.
  3. Rivera, Berta & Currais, Luis, 1999. "Income Variation and Health Expenditure: Evidence for OECD Countries," Review of Development Economics, Wiley Blackwell, vol. 3(3), pages 258-67, October.
  4. Nancy Devlin & Paul Hansen, 2001. "Health care spending and economic output: Granger causality," Applied Economics Letters, Taylor & Francis Journals, vol. 8(8), pages 561-564.
  5. Erkan Erdil & I. Hakan Yetkiner, 2009. "The Granger-causality between health care expenditure and output: a panel data approach," Applied Economics, Taylor & Francis Journals, vol. 41(4), pages 511-518.
  6. Engle, Robert F & Granger, Clive W J, 1987. "Co-integration and Error Correction: Representation, Estimation, and Testing," Econometrica, Econometric Society, vol. 55(2), pages 251-76, March.
  7. Berta Rivera & Luis Currais, 1999. "Economic growth and health: direct impact or reverse causation?," Applied Economics Letters, Taylor & Francis Journals, vol. 6(11), pages 761-764.
  8. Diks, Cees & Panchenko, Valentyn, 2006. "A new statistic and practical guidelines for nonparametric Granger causality testing," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1647-1669.
  9. Granger, C. W. J., 1981. "Some properties of time series data and their use in econometric model specification," Journal of Econometrics, Elsevier, vol. 16(1), pages 121-130, May.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:halshs-00606048. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (CCSD)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.