IDEAS home Printed from https://ideas.repec.org/p/hal/wpaper/halshs-00541163.html
   My bibliography  Save this paper

An Agnostic Look at Bayesian Statistics and Econometrics

Author

Listed:
  • Russell Davidson

    (GREQAM - Groupement de Recherche en Économie Quantitative d'Aix-Marseille - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique, McGill University = Université McGill [Montréal, Canada])

Abstract

Bayesians and non-Bayesians, often called frequentists, seem to be perpetually at loggerheads on fundamental questions of statistical inference. This paper takes as agnostic a stand as is possible for a practising frequentist, and tries to elicit a Bayesian answer to questions of interest to frequentists. The argument is based on my presentation at a debate organised by the Rimini Centre for Economic Analysis, between me as the frequentist `àdvocate'', and Christian Robert on the Bayesian side.

Suggested Citation

  • Russell Davidson, 2010. "An Agnostic Look at Bayesian Statistics and Econometrics," Working Papers halshs-00541163, HAL.
  • Handle: RePEc:hal:wpaper:halshs-00541163
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-00541163
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-00541163/document
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    2. Jean-Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics, Canadian Economics Association, vol. 36(4), pages 767-808, November.
    3. Davidson, Russell & Flachaire, Emmanuel, 2007. "Asymptotic and bootstrap inference for inequality and poverty measures," Journal of Econometrics, Elsevier, vol. 141(1), pages 141-166, November.
    4. Jean‐Marie Dufour, 2003. "Identification, weak instruments, and statistical inference in econometrics," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 36(4), pages 767-808, November.
    5. Davidson, Russell & MacKinnon, James G., 2010. "Wild Bootstrap Tests for IV Regression," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 128-144.
    6. Davidson, Russell & MacKinnon, James, 2006. "Bootstrap Inference in a Linear Equation Estimated by Instrumental Variables," Queen's Economics Department Working Papers 273460, Queen's University - Department of Economics.
    7. Davidson, Russell, 2009. "Reliable inference for the Gini index," Journal of Econometrics, Elsevier, vol. 150(1), pages 30-40, May.
    8. Russell Davidson & James G. MacKinnon, 2008. "Bootstrap inference in a linear equation estimated by instrumental variables," Econometrics Journal, Royal Economic Society, vol. 11(3), pages 443-477, November.
    9. Davidson, Russell & MacKinnon, James G., 2008. "Bootstrap Inference in a Linear Equation Estimated by Instrumental Variables," Queen's Economics Department Working Papers 273633, Queen's University - Department of Economics.
    10. Pierre Perron & Zhongjun Qu, 2007. "An Analytical Evaluation of the Log-periodogram Estimate in the Presence of Level Shifts," Boston University - Department of Economics - Working Papers Series wp2007-044, Boston University - Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Purevdorj Tuvaandorj, 2021. "Robust Permutation Tests in Linear Instrumental Variables Regression," Papers 2111.13774, arXiv.org, revised Jul 2024.
    2. Russell Davidson & Victoria Zinde‐Walsh, 2017. "Advances in specification testing," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 50(5), pages 1595-1631, December.
    3. Russell Davidson & James G. MacKinnon, 2015. "Bootstrap Tests for Overidentification in Linear Regression Models," Econometrics, MDPI, vol. 3(4), pages 1-39, December.
    4. MacKinnon, James G., 2023. "Fast cluster bootstrap methods for linear regression models," Econometrics and Statistics, Elsevier, vol. 26(C), pages 52-71.
    5. Wang, Wenjie, 2021. "Wild Bootstrap for Instrumental Variables Regression with Weak Instruments and Few Clusters," MPRA Paper 106227, University Library of Munich, Germany.
    6. Wang, Wenjie & Zhang, Yichong, 2024. "Wild bootstrap inference for instrumental variables regressions with weak and few clusters," Journal of Econometrics, Elsevier, vol. 241(1).
    7. Wang, Wenjie, 2022. "Wild bootstrap test of overidentification with many instruments and heteroskedasticity," MPRA Paper 115168, University Library of Munich, Germany.
    8. Noud P.A. van Giersbergen, 2011. "Bootstrapping Subset Test Statistics in IV Regression," UvA-Econometrics Working Papers 11-08, Universiteit van Amsterdam, Dept. of Econometrics.
    9. Doko Tchatoka, Firmin & Wang, Wenjie, 2024. "Weak-Identification-Robust Bootstrap Tests after Pretesting for Exogeneity," MPRA Paper 123060, University Library of Munich, Germany.
    10. Russell Davidson & James G. MacKinnon, 2014. "Confidence sets based on inverting Anderson–Rubin tests," Econometrics Journal, Royal Economic Society, vol. 17(2), pages 39-58, June.
    11. Corinna.Ghirelli, 2014. "The scarring effect of early non-employment," Working Papers of Faculty of Economics and Business Administration, Ghent University, Belgium 14/895, Ghent University, Faculty of Economics and Business Administration.
    12. Doko Tchatoka, Firmin & Wang, Wenjie, 2025. "Identification-Robust Two-Stage Bootstrap Tests with Pretesting for Exogeneity," MPRA Paper 125017, University Library of Munich, Germany.
    13. Russell Davidson & James G. MacKinnon, 2014. "Bootstrap Confidence Sets with Weak Instruments," Econometric Reviews, Taylor & Francis Journals, vol. 33(5-6), pages 651-675, August.
    14. Doko Tchatoka, Firmin & Wang, Wenjie, 2021. "Uniform Inference after Pretesting for Exogeneity with Heteroskedastic Data," MPRA Paper 106408, University Library of Munich, Germany.
    15. Corinna GHIRELLI, 2015. "Scars of early non-employment in a rigid labour market," LIDAM Discussion Papers IRES 2015008, Université catholique de Louvain, Institut de Recherches Economiques et Sociales (IRES).
    16. Simon A. Broda & Raymond Kan, 2016. "On distributions of ratios," Biometrika, Biometrika Trust, vol. 103(1), pages 205-218.
    17. Wenjie Wang & Qingfeng Liu, 2015. "Bootstrap-based Selection for Instrumental Variables Model," Economics Bulletin, AccessEcon, vol. 35(3), pages 1886-1896.
    18. Keith Finlay & Leandro M. Magnusson, 2019. "Two applications of wild bootstrap methods to improve inference in cluster‐IV models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 34(6), pages 911-933, September.
    19. Doko Tchatoka, Firmin & Wang, Wenjie, 2021. "Size-corrected Bootstrap Test after Pretesting for Exogeneity with Heteroskedastic or Clustered Data," MPRA Paper 110899, University Library of Munich, Germany.
    20. Wang, Wenjie & Kaffo, Maximilien, 2016. "Bootstrap inference for instrumental variable models with many weak instruments," Journal of Econometrics, Elsevier, vol. 192(1), pages 231-268.

    More about this item

    Keywords

    ;
    ;
    ;

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C50 - Mathematical and Quantitative Methods - - Econometric Modeling - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:wpaper:halshs-00541163. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.