IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04425500.html
   My bibliography  Save this paper

Taming impulsive high-frequency data using optimal sampling periods

Author

Listed:
  • George Tzagkarakis

    (IRGO - Institut de Recherche en Gestion des Organisations - UB - Université de Bordeaux - Institut d'Administration des Entreprises (IAE) - Bordeaux)

  • Frantz Maurer

    (Kedge BS - Kedge Business School, IRGO - Institut de Recherche en Gestion des Organisations - UB - Université de Bordeaux - Institut d'Administration des Entreprises (IAE) - Bordeaux)

  • J.P. Nolan

Abstract

Optimal sampling period selection for high-frequency data is at the core of financial instruments based on algorithmic trading. The unique features of such data, absent in data measured at lower frequencies, raise significant challenges to their statistical analysis and econometric modelling, especially in the case of heavy-tailed data exhibiting outliers and rare events much more frequently. To address this problem, this paper proposes a new methodology for optimal sampling period selection, which better adapts to heavy-tailed statistics of high-frequency financial data. In particular, the novel concept of the degree of impulsiveness (DoI) is introduced first based on alpha-stable distributions, as an alternative source of information for characterising a broad range of impulsive behaviours. Then, a DoI-based generalised volatility signature plot is defined, which is further employed for determining the optimal sampling period. The performance of our method is evaluated in the case of risk quantification for high-frequency indexes, demonstrating a significantly improved accuracy when compared against the well-established volatility-based approach. © 2023, The Author(s).

Suggested Citation

  • George Tzagkarakis & Frantz Maurer & J.P. Nolan, 2023. "Taming impulsive high-frequency data using optimal sampling periods," Post-Print hal-04425500, HAL.
  • Handle: RePEc:hal:journl:hal-04425500
    DOI: 10.1007/s10479-023-05701-y
    Note: View the original document on HAL open archive server: https://hal.science/hal-04425500v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04425500v1/document
    Download Restriction: no

    File URL: https://libkey.io/10.1007/s10479-023-05701-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Bandi, Federico M. & Russell, Jeffrey R., 2006. "Separating microstructure noise from volatility," Journal of Financial Economics, Elsevier, vol. 79(3), pages 655-692, March.
    2. Date, Paresh & Islyaev, Suren, 2015. "A fast calibrating volatility model for option pricing," European Journal of Operational Research, Elsevier, vol. 243(2), pages 599-606.
    3. Delaney, Laura, 2018. "Investment in high-frequency trading technology: A real options approach," European Journal of Operational Research, Elsevier, vol. 270(1), pages 375-385.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. George Tzagkarakis & Frantz Maurer & John P. Nolan, 2024. "Taming impulsive high-frequency data using optimal sampling periods," Annals of Operations Research, Springer, vol. 333(1), pages 393-415, February.
    2. Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
    3. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2016. "Volatility and quantile forecasts by realized stochastic volatility models with generalized hyperbolic distribution," International Journal of Forecasting, Elsevier, vol. 32(2), pages 437-457.
    4. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    5. Doureige J. Jurdi, 2020. "Intraday Jumps, Liquidity, and U.S. Macroeconomic News: Evidence from Exchange Traded Funds," JRFM, MDPI, vol. 13(6), pages 1-19, June.
    6. Lee, Hwang Hee & Hyun, Jung-Soon, 2019. "The asymmetric effect of equity volatility on credit default swap spreads," Journal of Banking & Finance, Elsevier, vol. 98(C), pages 125-136.
    7. repec:hum:wpaper:sfb649dp2013-021 is not listed on IDEAS
    8. Large, Jeremy, 2011. "Estimating quadratic variation when quoted prices change by a constant increment," Journal of Econometrics, Elsevier, vol. 160(1), pages 2-11, January.
    9. Vassilios G. Papavassiliou, 2016. "Allowing For Jump Measurements In Volatility: A High-Frequency Financial Data Analysis Of Individual Stocks," Bulletin of Economic Research, Wiley Blackwell, vol. 68(2), pages 124-132, April.
    10. Papavassiliou, Vassilios G. & Kinateder, Harald, 2021. "Information shares and market quality before and during the European sovereign debt crisis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 72(C).
    11. E. Bacry & S. Delattre & M. Hoffmann & J. F. Muzy, 2013. "Modelling microstructure noise with mutually exciting point processes," Quantitative Finance, Taylor & Francis Journals, vol. 13(1), pages 65-77, January.
    12. Kim Christensen & Ulrich Hounyo & Mark Podolskij, 2017. "Is the diurnal pattern sufficient to explain the intraday variation in volatility? A nonparametric assessment," CREATES Research Papers 2017-30, Department of Economics and Business Economics, Aarhus University.
    13. Alain P. Chaboud & Benjamin Chiquoine & Erik Hjalmarsson & Clara Vega, 2014. "Rise of the Machines: Algorithmic Trading in the Foreign Exchange Market," Journal of Finance, American Finance Association, vol. 69(5), pages 2045-2084, October.
    14. Christensen, Kim & Kinnebrock, Silja & Podolskij, Mark, 2010. "Pre-averaging estimators of the ex-post covariance matrix in noisy diffusion models with non-synchronous data," Journal of Econometrics, Elsevier, vol. 159(1), pages 116-133, November.
    15. O’Sullivan, Conall & Papavassiliou, Vassilios G. & Wafula, Ronald Wekesa & Boubaker, Sabri, 2024. "New insights into liquidity resiliency," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 90(C).
    16. Takahashi, Makoto & Watanabe, Toshiaki & Omori, Yasuhiro, 2024. "Forecasting Daily Volatility of Stock Price Index Using Daily Returns and Realized Volatility," Econometrics and Statistics, Elsevier, vol. 32(C), pages 34-56.
    17. Mbairadjim Moussa, A. & Sadefo Kamdem, J. & Terraza, M., 2014. "Fuzzy value-at-risk and expected shortfall for portfolios with heavy-tailed returns," Economic Modelling, Elsevier, vol. 39(C), pages 247-256.
    18. Selma Chaker, 2013. "Volatility and Liquidity Costs," Staff Working Papers 13-29, Bank of Canada.
    19. Peter C. B. Phillips & Jun Yu, 2024. "Information loss in volatility measurement with flat price trading," Advanced Studies in Theoretical and Applied Econometrics, in: Subal C. Kumbhakar & Robin C. Sickles & Hung-Jen Wang (ed.), Advances in Applied Econometrics, pages 501-543, Springer.
    20. Martin D. Gould & Mason A. Porter & Stacy Williams & Mark McDonald & Daniel J. Fenn & Sam D. Howison, 2010. "Limit Order Books," Papers 1012.0349, arXiv.org, revised Apr 2013.
    21. Dimpfl, Thomas & Peter, Franziska J., 2021. "Nothing but noise? Price discovery across cryptocurrency exchanges," Journal of Financial Markets, Elsevier, vol. 54(C).

    More about this item

    Keywords

    High-frequency indexes; Alpha-stable models; Degree of impulsiveness; Optimal sampling period;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04425500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.