IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-02021423.html
   My bibliography  Save this paper

Coupling economic models and environmental assessment methods to support regional policies : A critical review

Author

Listed:
  • Thomas Beaussier

    (BETA - Bureau d'Économie Théorique et Appliquée - INRA - Institut National de la Recherche Agronomique - UNISTRA - Université de Strasbourg - UL - Université de Lorraine - CNRS - Centre National de la Recherche Scientifique, UMR ITAP - Information – Technologies – Analyse Environnementale – Procédés Agricoles - IRSTEA - Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture - Montpellier SupAgro - Institut national d’études supérieures agronomiques de Montpellier)

  • Sylvain Caurla

    (BETA - Bureau d'Économie Théorique et Appliquée - INRA - Institut National de la Recherche Agronomique - UNISTRA - Université de Strasbourg - UL - Université de Lorraine - CNRS - Centre National de la Recherche Scientifique)

  • Véronique Bellon Maurel

    (UMR ITAP - Information – Technologies – Analyse Environnementale – Procédés Agricoles - IRSTEA - Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture - Montpellier SupAgro - Institut national d’études supérieures agronomiques de Montpellier)

  • Eléonore Loiseau

    (UMR ITAP - Information – Technologies – Analyse Environnementale – Procédés Agricoles - IRSTEA - Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture - Montpellier SupAgro - Institut national d’études supérieures agronomiques de Montpellier)

Abstract

This review analyses and compares the most promising methods to perform ex ante economic and environmental assessment of policies at the meso scale, i.e. from local communities to subnational regions. These methods called Economic-Environment Integrated Models (EEIM) are based on the coupling of formalised economic modelling tools with environmental assessment methods. The economic modelling tools considered are Input Output (IO) models, Computable General Equilibrium (CGE) and Partial Equilibrium (PE) models, Agent-Based models (ABM), and System Dynamics (SD) models, which we pair with environmental assessment methods such as Footprints (FP), Life Cycle Assessment (LCA), or Material Flow Analysis (MFA). A grid of criteria is developed to perform a qualitative rating of the EEIMs according to existing literature. The grid encompasses the detail level of the economic modelling, the level of coupling between environmental and economic tools, the quality and diversity of indicators, the ability to account for diverse indirect effects, spatial differentiation, time aspects, and the coupled model usability. First, the results show that the couplings do not perform on the same criteria, which shows complementarity to deal with diverse issues. Second, overall, for most criteria, PE/CGE models coupled with FP/LCA ranked highest. Third, a few case studies showed that couplings involving a third tool can be beneficial— for instance AB modelling or MFA with PE/CGE-LCA/FP may allow to overcome some shortcomings such as agent behaviour modelling or data availability for biophysical flows.

Suggested Citation

  • Thomas Beaussier & Sylvain Caurla & Véronique Bellon Maurel & Eléonore Loiseau, 2019. "Coupling economic models and environmental assessment methods to support regional policies : A critical review," Post-Print hal-02021423, HAL.
  • Handle: RePEc:hal:journl:hal-02021423
    DOI: 10.1016/j.jclepro.2019.01.020
    Note: View the original document on HAL open archive server: https://hal.science/hal-02021423
    as

    Download full text from publisher

    File URL: https://hal.science/hal-02021423/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jclepro.2019.01.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jonathan Lenglet & Jean-Yves Courtonne & Sylvain Caurla, 2016. "Material flow analysis of the forest-wood supply chain: a consequential approach for log export policies in France," Working Papers - Cahiers du LEF 2016-04, Laboratoire d'Economie Forestiere, AgroParisTech-INRA, revised Apr 2016.
    2. Leigh Tesfatsion, 2017. "Elements of Dynamic Economic Modeling: Presentation and Analysis," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 43(2), pages 192-216, March.
    3. McGregor, Peter G. & Swales, J. Kim & Turner, Karen, 2008. "The CO2 'trade balance' between Scotland and the rest of the UK: Performing a multi-region environmental input-output analysis with limited data," Ecological Economics, Elsevier, vol. 66(4), pages 662-673, July.
    4. Risku-Norja, Helmi & Maenpaa, Ilmo, 2007. "MFA model to assess economic and environmental consequences of food production and consumption," Ecological Economics, Elsevier, vol. 60(4), pages 700-711, February.
    5. Jeroen B. Guinée & Reinout Heijungs, 2011. "Life Cycle Sustainability Analysis," Journal of Industrial Ecology, Yale University, vol. 15(5), pages 656-658, October.
    6. Escobar, Neus & Manrique-de-Lara-Peñate, Casiano & Sanjuán, Neus & Clemente, Gabriela & Rozakis, Stelios, 2017. "An agro-industrial model for the optimization of biodiesel production in Spain to meet the European GHG reduction targets," Energy, Elsevier, vol. 120(C), pages 619-631.
    7. Shrestha, Eleeja & Ahmad, Sajjad & Johnson, Walter & Batista, Jacimaria R., 2012. "The carbon footprint of water management policy options," Energy Policy, Elsevier, vol. 42(C), pages 201-212.
    8. Daigneault, Adam J. & Morgan, Fraser, 2012. "Estimating Impacts of Climate Change Policy on Land Use: An Agent Based Modeling Approach," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124973, Agricultural and Applied Economics Association.
    9. Deepak Rajagopal, 2017. "A Step Towards a General Framework for Consequential Life Cycle Assessment," Journal of Industrial Ecology, Yale University, vol. 21(2), pages 261-271, April.
    10. J. C. Minx & T. Wiedmann & R. Wood & G. P. Peters & M. Lenzen & A. Owen & K. Scott & J. Barrett & K. Hubacek & G. Baiocchi & A. Paul & E. Dawkins & J. Briggs & D. Guan & S. Suh & F. Ackerman, 2009. "Input-Output Analysis And Carbon Footprinting: An Overview Of Applications," Economic Systems Research, Taylor & Francis Journals, vol. 21(3), pages 187-216.
    11. Bichraoui-Draper, Najet & Xu, Ming & Miller, Shelie A. & Guillaume, Bertrand, 2015. "Agent-based life cycle assessment for switchgrass-based bioenergy systems," Resources, Conservation & Recycling, Elsevier, vol. 103(C), pages 171-178.
    12. Scott Loveridge, 2004. "A Typology and Assessment of Multi-sector Regional Economic Impact Models," Regional Studies, Taylor & Francis Journals, vol. 38(3), pages 305-317.
    13. Shelie A. Miller & Stephen Moysey & Benjamin Sharp & Jose Alfaro, 2013. "A Stochastic Approach to Model Dynamic Systems in Life Cycle Assessment," Journal of Industrial Ecology, Yale University, vol. 17(3), pages 352-362, June.
    14. Fraser J Morgan & Adam J Daigneault, 2015. "Estimating Impacts of Climate Change Policy on Land Use: An Agent-Based Modelling Approach," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-20, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miguel Riviere & Sylvain Caurla & Philippe Delacote, 2020. "Evolving Integrated Models From Narrower Economic Tools : the Example of Forest Sector Models," Post-Print hal-02512330, HAL.
    2. Anja Bauer & Leo Capari & Daniela Fuchs & Titus Udrea, 2023. "Diversification, integration, and opening: developments in modelling for policy," Science and Public Policy, Oxford University Press, vol. 50(6), pages 977-987.
    3. Joris Baars & Mohammad Ali Rajaeifar & Oliver Heidrich, 2022. "Quo vadis MFA? Integrated material flow analysis to support material efficiency," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1487-1503, August.
    4. Tianran Ding & Bernhard Steubing & Wouter Achten, 2022. "Coupling optimization with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/359529, ULB -- Universite Libre de Bruxelles.
    5. Porcelli, Roberto & Gibon, Thomas & Marazza, Diego & Righi, Serena & Rugani, Benedetto, 2023. "Prospective environmental impact assessment and simulation applied to an emerging biowaste-based energy technology in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    6. Broitman, Dani & Ben-Haim, Yakov, 2022. "Forecasting residential sprawl under uncertainty: An info-gap analysis," Land Use Policy, Elsevier, vol. 120(C).
    7. Choe, Changgwon & Cheon, Seunghyun & Gu, Jiwon & Lim, Hankwon, 2022. "Critical aspect of renewable syngas production for power-to-fuel via solid oxide electrolysis: Integrative assessment for potential renewable energy source," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. Tianran Ding & Wouter Achten, 2023. "Coupling agent-based modeling with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/359527, ULB -- Universite Libre de Bruxelles.
    9. Edgar Battand Towa Kouokam & Vanessa Zeller & Wouter Achten, 2019. "Input-output models and waste management analysis: A critical review," ULB Institutional Repository 2013/359535, ULB -- Universite Libre de Bruxelles.
    10. Ronny Meglin & Susanne Kytzia & Guillaume Habert, 2022. "Regional circular economy of building materials: Environmental and economic assessment combining Material Flow Analysis, Input‐Output Analyses, and Life Cycle Assessment," Journal of Industrial Ecology, Yale University, vol. 26(2), pages 562-576, April.
    11. Rory J. Layton & Rachel Horta Arduin & Haji Yazdeen & Regis Pommier & Guido Sonnemann, 2021. "Material Flow Analysis to Evaluate Supply Chain Evolution and Management: An Example Focused on Maritime Pine in the Landes de Gascogne Forest, France," Sustainability, MDPI, vol. 13(8), pages 1-12, April.
    12. Quyen Le Luu & Sonia Longo & Maurizio Cellura & Eleonora Riva Sanseverino & Maria Anna Cusenza & Vincenzo Franzitta, 2020. "A Conceptual Review on Using Consequential Life Cycle Assessment Methodology for the Energy Sector," Energies, MDPI, vol. 13(12), pages 1-19, June.
    13. J. Brusselaers & K. Breemersch & T. Geerken & M. Christis & B. Lahcen & Y. Dams, 2022. "Macroeconomic and environmental consequences of circular economy measures in a small open economy," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 68(2), pages 283-306, April.
    14. Tianran Ding & Wouter Achten, 2022. "Coupling agent-based modeling with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/352782, ULB -- Universite Libre de Bruxelles.
    15. Tianran Ding & Bernhard Steubing & Wouter Achten, 2022. "Coupling optimization with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/352783, ULB -- Universite Libre de Bruxelles.
    16. Hong Yao & Qingxiang Zhang & Guangyuan Niu & Huan Liu & Yuxi Yang, 2021. "Applying the GM(1,1) model to simulate and predict the ecological footprint values of Suzhou city, China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11297-11309, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tianran Ding & Wouter Achten, 2023. "Coupling agent-based modeling with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/359527, ULB -- Universite Libre de Bruxelles.
    2. Duy X. Tran & Diane Pearson & Alan Palmer & David Gray, 2020. "Developing a Landscape Design Approach for the Sustainable Land Management of Hill Country Farms in New Zealand," Land, MDPI, vol. 9(6), pages 1-29, June.
    3. Karen Turner & Max Munday & Stuart McIntyre & Christa D Jensen, 2011. "Incorporating Jurisdiction Issues into Regional Carbon Accounts under Production and Consumption Accounting Principles," Environment and Planning A, , vol. 43(3), pages 722-741, March.
    4. Tianran Ding & Wouter Achten, 2022. "Coupling agent-based modeling with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/352782, ULB -- Universite Libre de Bruxelles.
    5. Dadhich, P. & Genovese, A. & Kumar, N. & Acquaye, A., 2015. "Developing sustainable supply chains in the UK construction industry: A case study," International Journal of Production Economics, Elsevier, vol. 164(C), pages 271-284.
    6. Caggiani, Leonardo & Ottomanelli, Michele & Dell’Orco, Mauro, 2014. "Handling uncertainty in Multi Regional Input-Output models by entropy maximization and fuzzy programming," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 71(C), pages 159-172.
    7. Hongbin Liu & Mengyao Wu & Xinhua Liu & Jiaju Gao & Xiaojuan Luo & Yan Wu, 2021. "Simulation of Policy Tools’ Effects on Farmers’ Adoption of Conservation Tillage Technology: An Empirical Analysis in China," Land, MDPI, vol. 10(10), pages 1-23, October.
    8. Fraser J. Morgan & Philip Brown & Adam J. Daigneault, 2015. "Simulation vs. Definition: Differing Approaches to Setting Probabilities for Agent Behaviour," Land, MDPI, vol. 4(4), pages 1-24, September.
    9. Makiko Tsukui & Shigemi Kagawa & Yasushi Kondo, 2015. "Measuring the waste footprint of cities in Japan: an interregional waste input–output analysis," Journal of Economic Structures, Springer;Pan-Pacific Association of Input-Output Studies (PAPAIOS), vol. 4(1), pages 1-24, December.
    10. Zimmermannová Jarmila & Pawliczek Adam & Čermák Petr, 2018. "Public Support of Solar Electricity and its Impact on Households - Prosumers," Organizacija, Sciendo, vol. 51(1), pages 4-19, February.
    11. Gawith, David & Hodge, Ian & Morgan, Fraser & Daigneault, Adam, 2020. "Climate change costs more than we think because people adapt less than we assume," Ecological Economics, Elsevier, vol. 173(C).
    12. Daniel Moran & Richard Wood, 2014. "Convergence Between The Eora, Wiod, Exiobase, And Openeu'S Consumption-Based Carbon Accounts," Economic Systems Research, Taylor & Francis Journals, vol. 26(3), pages 245-261, September.
    13. Li, Yilin & Chen, Bin & Li, Chaohui & Li, Zhi & Chen, Guoqian, 2020. "Energy perspective of Sino-US trade imbalance in global supply chains," Energy Economics, Elsevier, vol. 92(C).
    14. Yang, Honghua & Ma, Linwei & Li, Zheng, 2023. "Tracing China's steel use from steel flows in the production system to steel footprints in the consumption system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    15. Huang, Liqiao & Long, Yin & Chen, Jundong & Yoshida, Yoshikuni, 2023. "Sustainable lifestyle: Urban household carbon footprint accounting and policy implications for lifestyle-based decarbonization," Energy Policy, Elsevier, vol. 181(C).
    16. Chang Seung & Edward Waters, 2010. "Evaluating Supply-Side And Demand-Side Shocks For Fisheries: A Computable General Equilibrium (Cge) Model For Alaska," Economic Systems Research, Taylor & Francis Journals, vol. 22(1), pages 87-109.
    17. Yulei Xie & Ling Ji & Beibei Zhang & Gordon Huang, 2018. "Evolution of the Scientific Literature on Input–Output Analysis: A Bibliometric Analysis of 1990–2017," Sustainability, MDPI, vol. 10(9), pages 1-17, September.
    18. Minihan, Erin S. & Wu, Ziping, 2011. "The Potential Economic and Environmental Costs of GHG Mitigation Measures for Cattle Sectors in Northern Ireland," 85th Annual Conference, April 18-20, 2011, Warwick University, Coventry, UK 108779, Agricultural Economics Society.
    19. Nicolas Robert & Ragnar Jonsson & Rafał Chudy & Andrea Camia, 2020. "The EU Bioeconomy: Supporting an Employment Shift Downstream in the Wood-Based Value Chains?," Sustainability, MDPI, vol. 12(3), pages 1-14, January.
    20. Nogueira Vilanova, Mateus Ricardo & Perrella Balestieri, José Antônio, 2014. "Energy and hydraulic efficiency in conventional water supply systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 701-714.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-02021423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.