IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-01137656.html
   My bibliography  Save this paper

Perspective of CO2 capture & storage (CCS) development in Vietnam: Results from expert interviews

Author

Listed:
  • Hoang Anh Nguyen Trinh

    (CleanED - Clean Energy and Sustainable Development Lab - USTH - University of Science and Technology of Hanoi, Department of Renewable Energy - USTH - University of Science and Technology of Hanoi - CleanED - Clean Energy and Sustainable Development Lab - USTH - University of Science and Technology of Hanoi, USTH - University of Science and Technology of Hanoi, CIRED - centre international de recherche sur l'environnement et le développement - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - EHESS - École des hautes études en sciences sociales - AgroParisTech - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique)

  • Minh Ha-Duong

    (CleanED - Clean Energy and Sustainable Development Lab - USTH - University of Science and Technology of Hanoi, Department of Renewable Energy - USTH - University of Science and Technology of Hanoi - CleanED - Clean Energy and Sustainable Development Lab - USTH - University of Science and Technology of Hanoi, USTH - University of Science and Technology of Hanoi, CIRED - centre international de recherche sur l'environnement et le développement - Cirad - Centre de Coopération Internationale en Recherche Agronomique pour le Développement - EHESS - École des hautes études en sciences sociales - AgroParisTech - ENPC - École des Ponts ParisTech - CNRS - Centre National de la Recherche Scientifique)

Abstract

This paper summarizes expert opinions regarding crucial factors that may influence Vietnam's future use of carbon capture and storage (CCS) based on face-to-face interviews in December 2013 with 16 CCS-related experts from the Vietnamese government, research institutes, universities and the energy industrial sector. This study finds that financial incentives and climate policy are the most important factors for the development of CCS technologies in Vietnam in the next two decades. Financial incentives involve direct subsidies from the government, such as tax exemptions for land use and the importation of CCS-related equipment. In addition, all the experts agree that international financial support is important to initiate a large deployment of CCS technologies in Vietnam by implementing demonstrative/pilot projects to prove CCS's working efficiency.

Suggested Citation

  • Hoang Anh Nguyen Trinh & Minh Ha-Duong, 2015. "Perspective of CO2 capture & storage (CCS) development in Vietnam: Results from expert interviews," Post-Print hal-01137656, HAL.
  • Handle: RePEc:hal:journl:hal-01137656
    DOI: 10.1016/j.ijggc.2015.03.019
    Note: View the original document on HAL open archive server: https://hal.science/hal-01137656
    as

    Download full text from publisher

    File URL: https://hal.science/hal-01137656/document
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.ijggc.2015.03.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Li, Jia & Liang, Xi & Cockerill, Tim, 2011. "Getting ready for carbon capture and storage through a ‘CCS (Carbon Capture and Storage) Ready Hub’: A case study of Shenzhen city in Guangdong province, China," Energy, Elsevier, vol. 36(10), pages 5916-5924.
    2. Dapeng, Liang & Weiwei, Wu, 2009. "Barriers and incentives of CCS deployment in China: Results from semi-structured interviews," Energy Policy, Elsevier, vol. 37(6), pages 2421-2432, June.
    3. Rubin, Edward S. & Chen, Chao & Rao, Anand B., 2007. "Cost and performance of fossil fuel power plants with CO2 capture and storage," Energy Policy, Elsevier, vol. 35(9), pages 4444-4454, September.
    4. Khanh Toan, Pham & Minh Bao, Nguyen & Ha Dieu, Nguyen, 2011. "Energy supply, demand, and policy in Viet Nam, with future projections," Energy Policy, Elsevier, vol. 39(11), pages 6814-6826.
    5. Shackley, Simon & Waterman, Holly & Godfroij, Per & Reiner, David & Anderson, Jason & Draxlbauer, Kathy & Flach, Todd, 2007. "Stakeholder perceptions of CO2 capture and storage in Europe: Results from a survey," Energy Policy, Elsevier, vol. 35(10), pages 5091-5108, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ha-Duong, Minh & Nguyen-Trinh, Hoang Anh, 2017. "Two scenarios for carbon capture and storage in Vietnam," Energy Policy, Elsevier, vol. 110(C), pages 559-569.
    2. Sarah Feron & Harald Heinrichs & Raúl R. Cordero, 2016. "Are the Rural Electrification Efforts in the Ecuadorian Amazon Sustainable?," Sustainability, MDPI, vol. 8(5), pages 1-22, May.
    3. Minh Ha-Duong & Hoang Anh Nguyen Trinh, 2017. "Two scenarios for carbon capture and storage in Vietnam," CIRED Working Papers hal-01550029, HAL.
    4. Muhammad Ridhuan Tony Lim Abdullah & Saedah Siraj & Zulkipli Ghazali, 2021. "An ISM Approach for Managing Critical Stakeholder Issues Regarding Carbon Capture and Storage (CCS) Deployment in Developing Asian Countries," Sustainability, MDPI, vol. 13(12), pages 1-23, June.
    5. Sarah Feron & Raúl R. Cordero, 2018. "Is Peru Prepared for Large-Scale Sustainable Rural Electrification?," Sustainability, MDPI, vol. 10(5), pages 1-20, May.
    6. Bokka, Harsha Kumar & Lau, Hon Chung, 2023. "Decarbonising Vietnam's power and industry sectors by carbon capture and storage," Energy, Elsevier, vol. 262(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bowen, Frances, 2011. "Carbon capture and storage as a corporate technology strategy challenge," Energy Policy, Elsevier, vol. 39(5), pages 2256-2264, May.
    2. Wu, Ning & Parsons, John E. & Polenske, Karen R., 2013. "The impact of future carbon prices on CCS investment for power generation in China," Energy Policy, Elsevier, vol. 54(C), pages 160-172.
    3. Hong-Hua Qiu & Lu-Ge Liu, 2018. "A Study on the Evolution of Carbon Capture and Storage Technology Based on Knowledge Mapping," Energies, MDPI, vol. 11(5), pages 1-25, May.
    4. Dapeng, Liang & Weiwei, Wu, 2009. "Barriers and incentives of CCS deployment in China: Results from semi-structured interviews," Energy Policy, Elsevier, vol. 37(6), pages 2421-2432, June.
    5. Li, Jia & Liang, Xi & Cockerill, Tim & Gibbins, Jon & Reiner, David, 2012. "Opportunities and barriers for implementing CO2 capture ready designs: A case study of stakeholder perceptions in Guangdong, China," Energy Policy, Elsevier, vol. 45(C), pages 243-251.
    6. Wu, X.D. & Yang, Q. & Chen, G.Q. & Hayat, T. & Alsaedi, A., 2016. "Progress and prospect of CCS in China: Using learning curve to assess the cost-viability of a 2×600MW retrofitted oxyfuel power plant as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1274-1285.
    7. Bhumika Gupta & Salil K. Sen, 2019. "Carbon Capture Usage and Storage with Scale-up: Energy Finance through Bricolage Deploying the Co-integration Methodology," International Journal of Energy Economics and Policy, Econjournals, vol. 9(6), pages 146-153.
    8. Garfield Wayne Hunter & Gideon Sagoe & Daniele Vettorato & Ding Jiayu, 2019. "Sustainability of Low Carbon City Initiatives in China: A Comprehensive Literature Review," Sustainability, MDPI, vol. 11(16), pages 1-37, August.
    9. Setiawan, Andri D. & Cuppen, Eefje, 2013. "Stakeholder perspectives on carbon capture and storage in Indonesia," Energy Policy, Elsevier, vol. 61(C), pages 1188-1199.
    10. Lai, N.Y.G. & Yap, E.H. & Lee, C.W., 2011. "Viability of CCS: A broad-based assessment for Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3608-3616.
    11. Barelli, L. & Ottaviano, A., 2014. "Solid oxide fuel cell technology coupled with methane dry reforming: A viable option for high efficiency plant with reduced CO2 emissions," Energy, Elsevier, vol. 71(C), pages 118-129.
    12. Mara Madaleno & Victor Moutinho & Jorge Mota, 2015. "Time Relationships among Electricity and Fossil Fuel Prices: Industry and Households in Europe," International Journal of Energy Economics and Policy, Econjournals, vol. 5(2), pages 525-533.
    13. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2014. "South Korean energy scenarios show how nuclear power can reduce future energy and environmental costs," Energy Policy, Elsevier, vol. 74(C), pages 569-578.
    14. Zhang, Kai & Lau, Hon Chung & Liu, Shuyang & Li, Hangyu, 2022. "Carbon capture and storage in the coastal region of China between Shanghai and Hainan," Energy, Elsevier, vol. 247(C).
    15. Seán Diffney & Laura Malaguzzi Valeri & Darragh Walsh, 2012. "Should Coal Replace Coal? Options for the Irish Electricity Market," The Economic and Social Review, Economic and Social Studies, vol. 43(4), pages 561-596.
    16. Lee, Suh-Young & Lee, Jae-Uk & Lee, In-Beum & Han, Jeehoon, 2017. "Design under uncertainty of carbon capture and storage infrastructure considering cost, environmental impact, and preference on risk," Applied Energy, Elsevier, vol. 189(C), pages 725-738.
    17. Muhammad Asif & Muhammad Suleman & Ihtishamul Haq & Syed Asad Jamal, 2018. "Post‐combustion CO2 capture with chemical absorption and hybrid system: current status and challenges," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(6), pages 998-1031, December.
    18. Hanak, Dawid P. & Jenkins, Barrie G. & Kruger, Tim & Manovic, Vasilije, 2017. "High-efficiency negative-carbon emission power generation from integrated solid-oxide fuel cell and calciner," Applied Energy, Elsevier, vol. 205(C), pages 1189-1201.
    19. Marie Renner, 2014. "Carbon prices and CCS investment: comparative study between the European Union and China," Working Papers 1402, Chaire Economie du climat.
    20. Nong, Duy & Nguyen, Duong Binh & Nguyen, Trung H. & Wang, Can & Siriwardana, Mahinda, 2020. "A stronger energy strategy for a new era of economic development in Vietnam: A quantitative assessment," Energy Policy, Elsevier, vol. 144(C).

    More about this item

    Keywords

    low carbon electricity; CO2 capture and storage; Vietnam; expert interview; emission reduction;
    All these keywords.

    JEL classification:

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-01137656. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.