IDEAS home Printed from https://ideas.repec.org/p/gta/workpp/6160.html
   My bibliography  Save this paper

Volume Preserving CES and CET Formulations

Author

Listed:
  • van der Mensbrugghe, Dominique
  • Jeffrey C. Peters

Abstract

As economists are increasingly working across disciplines, they are assessing alternative mathematical formulations to more closely align with the results from these disciplines. Two of the most widely used functional forms in quantitative economic analysis are the constant-elasticity-of-substitution (CES) and constant-elasticity-of-transformation (CET) functions. However, neither functional form preserves volume additivity, which may be a desirable feature in a number of contexts including labor and land allocation, energy systems, etc. This paper explores two alternatives to the ubiquitous CES and CET formulations, which have many of the same characteristics in terms of ease of implementation, but also preserve volume additivity. It illustrates some of the properties of the so-called additive forms of the CES and CET and assesses the impacts of switching to the additive CET in the context of land-use allocation in the Envisage model.

Suggested Citation

  • van der Mensbrugghe, Dominique & Jeffrey C. Peters, 2020. "Volume Preserving CES and CET Formulations," GTAP Working Papers 6160, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University.
  • Handle: RePEc:gta:workpp:6160
    Note: GTAP Working Paper No. 87
    as

    Download full text from publisher

    File URL: https://www.gtap.agecon.purdue.edu/resources/res_display.asp?RecordID=6160
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. B.C. O'Neill & T Carter & Kl Ebi & J. Edmonds & Stéphane Hallegatte & E. Kemp-Benedict & E. Kriegler & L. Mearns & R. Moss & K. Riahi & B. van Ruijven & D. van Vuuren, 2012. "Meeting Report of the Workshop on The Nature and Use of New Socioeconomic Pathways for Climate Change Research," Working Papers hal-00801931, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ikonnikova, Svetlana A. & Scanlon, Bridget R. & Berdysheva, Sofia A., 2023. "A global energy system perspective on hydrogen Trade: A framework for the market color and the size analysis," Applied Energy, Elsevier, vol. 330(PA).
    2. Taran Faehn & Gabriel Bachner & Robert Beach & Jean Chateau & Shinichiro Fujimori & Madanmohan Ghosh & Meriem Hamdi-Cherif & Elisa Lanzi & Sergey Paltsev & Toon Vandyck & Bruno Cunha & Rafael Garaffa , 2020. "Capturing Key Energy and Emission Trends in CGE models: Assessment of Status and Remaining Challenges," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 196-272, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Skea, Jim & van Diemen, Renée & Portugal-Pereira, Joana & Khourdajie, Alaa Al, 2021. "Outlooks, explorations and normative scenarios: Approaches to global energy futures compared," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    2. Michael P. Cameron, 2017. "Climate Change, Internal Migration and the Future Spatial Distribution of Population: A Case Study of New Zealand," Working Papers in Economics 17/03, University of Waikato.
    3. Brian O’Neill & Elmar Kriegler & Keywan Riahi & Kristie Ebi & Stephane Hallegatte & Timothy Carter & Ritu Mathur & Detlef Vuuren, 2014. "A new scenario framework for climate change research: the concept of shared socioeconomic pathways," Climatic Change, Springer, vol. 122(3), pages 387-400, February.
    4. Julie Rozenberg & Céline Guivarch & Robert Lempert & Stéphane Hallegatte, 2014. "Building SSPs for climate policy analysis: a scenario elicitation methodology to map the space of possible future challenges to mitigation and adaptation," Climatic Change, Springer, vol. 122(3), pages 509-522, February.
    5. Wojciech Szewczyk & Juan Carlos Ciscar Martinez & Ignazio Mongelli & Antonio Soria Ramirez, 2018. "JRC PESETA III Project: Economic integration and spillover analysis," JRC Research Reports JRC113810, Joint Research Centre.
    6. Robert Kopp & Bryan Mignone, 2013. "Circumspection, reciprocity, and optimal carbon prices," Climatic Change, Springer, vol. 120(4), pages 831-843, October.
    7. Trotter, Ian Michael & Féres, José Gustavo & Bolkesjø, Torjus Folsland & de Hollanda, Lavínia Rocha, 2015. "Simulating Brazilian Electricity Demand Under Climate Change Scenarios," Working Papers in Applied Economics 208689, Universidade Federal de Vicosa, Departamento de Economia Rural.
    8. Smeets Kristkova, Zuzana & Smeets, Edward & Van Meijl, Hans, "undated". "Agricultural R&D Investments, Biofuel Policy And Food Security – A CGE Analysis," 2017 International Congress, August 28-September 1, 2017, Parma, Italy 260822, European Association of Agricultural Economists.
    9. Vanessa J. Schweizer, 2020. "Reflections on cross-impact balances, a systematic method constructing global socio-technical scenarios for climate change research," Climatic Change, Springer, vol. 162(4), pages 1705-1722, October.
    10. Sun, Xiaojun & Fan, Yee Van & Lei, Yalin & Si, Chunyan & Cao, Zimin & Varbanov, Petar Sabev, 2025. "Mechanism of environmental regulation on energy productivity, energy structure, and carbon emissions: The role of directed technological progress," Energy, Elsevier, vol. 328(C).
    11. Clarke, Leon & Krey, Volker & Weyant, John & Chaturvedi, Vaibhav, 2012. "Regional energy system variation in global models: Results from the Asian Modeling Exercise scenarios," Energy Economics, Elsevier, vol. 34(S3), pages 293-305.
    12. Laura A. Bakkensen & Xiangying Shi & Brianna D. Zurita, 2018. "The Impact of Disaster Data on Estimating Damage Determinants and Climate Costs," Economics of Disasters and Climate Change, Springer, vol. 2(1), pages 49-71, April.
    13. Matthias Garschagen & Patricia Romero-Lankao, 2015. "Exploring the relationships between urbanization trends and climate change vulnerability," Climatic Change, Springer, vol. 133(1), pages 37-52, November.
    14. Anil Markandya & Enrica Cian & Laurent Drouet & Josué M. Polanco-Martínez & Francesco Bosello, 2019. "Building Risk into the Mitigation/Adaptation Decisions simulated by Integrated Assessment Models," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(4), pages 1687-1721, December.
    15. Zuzana Smeets Kristkova & Michiel van Dijk & Hans van Meijl, 2015. "Long-term projections of global food security with R&D-driven technological progress," EcoMod2015 8601, EcoMod.
    16. Markandya, Anil & De Cian, Enrica & Drouet, Laurent & Polanco-Martìnez, Josué M. & Bosello, Francesco, "undated". "Building Uncertainty into the Adaptation Cost Estimation in Integrated Assessment Models," EIA: Climate Change: Economic Impacts and Adaptation 232719, Fondazione Eni Enrico Mattei (FEEM).
    17. Heinz-Peter Witzke & Pavel Ciaian & Jacques Delince, 2014. "CAPRI long-term climate change scenario analysis: The AgMIP approach," JRC Research Reports JRC85872, Joint Research Centre.
    18. Hans van Meijl & Petr Havlik & Hermann Lotze-Campen & Elke Stehfest & Peter Witzke & Ignacio Perez Dominguez & Benjamin Bodirsky & Michiel van Dijk & Jonathan Doelman & Thomas Fellmann & Florian Humpe, 2017. "Challenges of Global Agriculture in a Climate Change Context by 2050 (AgCLIM50)," JRC Research Reports JRC106835, Joint Research Centre.
    19. Ben Parkes & Jennifer Cronin & Olivier Dessens & Benjamin Sultan, 2019. "Climate change in Africa: costs of mitigating heat stress," Climatic Change, Springer, vol. 154(3), pages 461-476, June.
    20. Nigel Arnell & Ben Lloyd-Hughes, 2014. "The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios," Climatic Change, Springer, vol. 122(1), pages 127-140, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gta:workpp:6160. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jeremy Douglas (email available below). General contact details of provider: https://edirc.repec.org/data/gtpurus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.