IDEAS home Printed from https://ideas.repec.org/p/gat/wpaper/1109.html
   My bibliography  Save this paper

On the Interaction between Heterogeneity and Decay in Two-way Flow Models

Author

Listed:
  • Pascal Billand

    (Université de Lyon, Lyon, F-69007, France ; Université Jean Monnet, Saint-Etienne, F-42000, France ; CNRS, GATE Lyon St Etienne, Saint-Etienne, F-42000, France)

  • Christophe Bravard

    (Université de Lyon, Lyon, F-69007, France ; Université Jean Monnet, Saint-Etienne, F-42000, France ; CNRS, GATE Lyon St Etienne, Saint-Etienne, F-42000, France)

  • Sudipta Sarangi

    (Department of Economics, Virginia Tech and Louisiana State University)

Abstract

In this paper we examine the role played by heterogeneity in the popular “connections model” of Jackson and Wolinsky (1996). We prove that under heterogeneity in values or decay involving only two degrees of freedom, all networks can supported as Nash. Moreover, we show that Nash networks may not always exist. In the absence of decay, neither result can be found in a model with value heterogeneity. Finally, we show that on reducing heterogeneity, both the earlier “anything goes” result and the non-existence problem disappear.

Suggested Citation

  • Pascal Billand & Christophe Bravard & Sudipta Sarangi, 2011. "On the Interaction between Heterogeneity and Decay in Two-way Flow Models," Working Papers 1109, Groupe d'Analyse et de Théorie Economique Lyon St-Étienne (GATE Lyon St-Étienne), Université de Lyon.
  • Handle: RePEc:gat:wpaper:1109
    as

    Download full text from publisher

    File URL: ftp://ftp.gate.cnrs.fr/RePEc/2011/1109.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jackson, Matthew O. & Wolinsky, Asher, 1996. "A Strategic Model of Social and Economic Networks," Journal of Economic Theory, Elsevier, vol. 71(1), pages 44-74, October.
    2. Venkatesh Bala & Sanjeev Goyal, 2000. "A Noncooperative Model of Network Formation," Econometrica, Econometric Society, vol. 68(5), pages 1181-1230, September.
    3. Galeotti, Andrea & Goyal, Sanjeev & Kamphorst, Jurjen, 2006. "Network formation with heterogeneous players," Games and Economic Behavior, Elsevier, vol. 54(2), pages 353-372, February.
    4. Hans Haller & Jurjen Kamphorst & Sudipta Sarangi, 2007. "(Non-)existence and Scope of Nash Networks," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 31(3), pages 597-604, June.
    5. Hojman, Daniel A. & Szeidl, Adam, 2008. "Core and periphery in networks," Journal of Economic Theory, Elsevier, vol. 139(1), pages 295-309, March.
    6. Jackson, Matthew O. & Watts, Alison, 2002. "The Evolution of Social and Economic Networks," Journal of Economic Theory, Elsevier, vol. 106(2), pages 265-295, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Olaizola, By Norma & Valenciano, Federico, 2021. "Efficiency and stability in the connections model with heterogeneous nodes," Journal of Economic Behavior & Organization, Elsevier, vol. 189(C), pages 490-503.
    2. Philipp Möhlmeier & Agnieszka Rusinowska & Emily Tanimura, 2013. "A degree-distance-based connections model with negative and positive externalities," Post-Print halshs-00825266, HAL.
    3. Christophe Bravard & Sudipta Sarangi & PHILIPP MÖHLMEIER & AGNIESZKA RUSINOWSKA & EMILY TANIMURA, 2016. "A Degree-Distance-Based Connections Model with Negative and Positive Externalities," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 18(2), pages 168-192, April.
    4. Hitomu Kotani & Muneta Yokomatsu, 2019. "Quantitative evaluation of the roles of community events and artifacts for social network formation: a multilayer network model of a community of practice," Computational and Mathematical Organization Theory, Springer, vol. 25(4), pages 428-463, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chenghong Luo & Ana Mauleon & Vincent Vannetelbosch, 2021. "Network formation with myopic and farsighted players," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 71(4), pages 1283-1317, June.
    2. Olaizola, Norma & Valenciano, Federico, 2014. "Asymmetric flow networks," European Journal of Operational Research, Elsevier, vol. 237(2), pages 566-579.
      • Olaizola Ortega, María Norma & Valenciano Llovera, Federico, 2012. "Asymmetric flow networks," IKERLANAK http://www-fae1-eao1-ehu-, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
    3. Joost Vandenbossche & Thomas Demuynck, 2013. "Network Formation with Heterogeneous Agents and Absolute Friction," Computational Economics, Springer;Society for Computational Economics, vol. 42(1), pages 23-45, June.
    4. Breitmoser, Yves & Vorjohann, Pauline, 2013. "Efficient structure of noisy communication networks," Mathematical Social Sciences, Elsevier, vol. 66(3), pages 396-409.
    5. Olaizola Ortega, María Norma & Valenciano Llovera, Federico, 2011. "Network formation under institutional constraints," IKERLANAK info:eu-repo/grantAgreeme, Universidad del País Vasco - Departamento de Fundamentos del Análisis Económico I.
    6. Fan-chin Kung & Ping Wang, 2012. "A spatial network approach to urban configurations," Canadian Journal of Economics, Canadian Economics Association, vol. 45(1), pages 314-344, February.
    7. Haller, Hans & Hoyer, Britta, 2019. "The common enemy effect under strategic network formation and disruption," Journal of Economic Behavior & Organization, Elsevier, vol. 162(C), pages 146-163.
    8. Carayol, Nicolas & Roux, Pascale, 2009. "Knowledge flows and the geography of networks: A strategic model of small world formation," Journal of Economic Behavior & Organization, Elsevier, vol. 71(2), pages 414-427, August.
    9. Michael D König & Stefano Battiston & Mauro Napoletano & Frank Schweitzer, 2008. "The Efficiency and Evolution of R&D Networks," Working Papers hal-00973077, HAL.
    10. Goeree, Jacob K. & Riedl, Arno & Ule, Aljaz, 2009. "In search of stars: Network formation among heterogeneous agents," Games and Economic Behavior, Elsevier, vol. 67(2), pages 445-466, November.
    11. Gao Hongwei & Qiao Han & Sedakov Artem & Wang Lei, 2015. "A Dynamic Formation Procedure of Information Flow Networks," Journal of Systems Science and Information, De Gruyter, vol. 3(2), pages 97-110, April.
    12. repec:hal:wpspec:info:hdl:2441/9935 is not listed on IDEAS
    13. repec:spo:wpecon:info:hdl:2441/9935 is not listed on IDEAS
    14. Haller, Hans, 2012. "Network extension," Mathematical Social Sciences, Elsevier, vol. 64(2), pages 166-172.
    15. Pascal Billand & Christophe Bravard & Sudipta Sarangi & J. Kamphorst, 2011. "Confirming information flows in networks," Post-Print halshs-00672351, HAL.
    16. Billand, Pascal & Bravard, Christophe & Sarangi, Sudipta, 2012. "Existence of Nash networks and partner heterogeneity," Mathematical Social Sciences, Elsevier, vol. 64(2), pages 152-158.
    17. repec:hal:wpspec:info:hdl:2441/7346 is not listed on IDEAS
    18. Kinateder, Markus & Merlino, Luca Paolo, 2022. "Local public goods with weighted link formation," Games and Economic Behavior, Elsevier, vol. 132(C), pages 316-327.
    19. Hellmann, Tim & Staudigl, Mathias, 2014. "Evolution of social networks," European Journal of Operational Research, Elsevier, vol. 234(3), pages 583-596.
    20. Dev, Pritha, 2010. "Choosing `Me' and `My Friends': Identity in a Non-Cooperative Network Formation Game with Cost Sharing," MPRA Paper 21631, University Library of Munich, Germany.
    21. Schuster, Stephan, 2012. "Applications in Agent-Based Computational Economics," MPRA Paper 47201, University Library of Munich, Germany.
    22. Galeotti, Andrea & Ghiglino, Christian & Squintani, Francesco, 2013. "Strategic information transmission networks," Journal of Economic Theory, Elsevier, vol. 148(5), pages 1751-1769.
    23. Acemoglu, Daron & Makhdoumi, Ali & Malekian, Azarakhsh & Ozdaglar, Asuman, 2017. "Privacy-constrained network formation," Games and Economic Behavior, Elsevier, vol. 105(C), pages 255-275.

    More about this item

    Keywords

    connections model; decay; two-way flow models;
    All these keywords.

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D85 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Network Formation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gat:wpaper:1109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nelly Wirth (email available below). General contact details of provider: https://edirc.repec.org/data/gateefr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.