IDEAS home Printed from
MyIDEAS: Login to save this paper or follow this series

Solution to Non-Linear MHDS arising from Optimal Growth Problems

  • J. R. Ruiz-Tamarit
  • M. Ventura-Marco
Registered author(s):

    In this paper we propose a method for solving in closed form a general class of non-linear modified Hamiltonian dynamic systems (MHDS). This method may be used to analyze some intertemporal optimization problems With a predetermined structure involving unbounded technological constraints. The method seems specially well designed to study endogenous growth models With two controls and one state variable. We use the closed form solutions to Study either unicity or indeterminacy of the non-explosive paths in a Context charaterized by the lack of a well defined isolated steady state. Moreover, in this way we can avoid both the reduction of dimension and the linearization process even when the dynamic system offers a continuum of steady states or no steady stateat all.

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

    File URL:
    Download Restriction: no

    Paper provided by FEDEA in its series Working Papers with number 2000-16.

    in new window

    Date of creation:
    Date of revision:
    Handle: RePEc:fda:fdaddt:2000-16
    Contact details of provider: Web page:

    No references listed on IDEAS
    You can help add them by filling out this form.

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    When requesting a correction, please mention this item's handle: RePEc:fda:fdaddt:2000-16. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Carmen Arias)

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.