IDEAS home Printed from https://ideas.repec.org/p/fau/wpaper/wp2013_03.html
   My bibliography  Save this paper

Estimating Default and Recovery Rate Correlations

Author

Abstract

The paper analyzes a two-factor credit risk model allowing to capture default and recovery rate variation, their mutual correlation, and dependence on various explanatory variables. At the same time, it allows computing analytically the unexpected credit loss. We propose and empirically implement estimation of the model based on aggregate and exposure level Moody’s default and recovery data. The results confirm existence of significantly positive default and recovery rate correlation. We empirically compare the unexpected loss estimates based on the reduced two-factor model with Monte Carlo simulation results, and with the current regulatory formula outputs. The results show a very good performance of the proposed analytical formula which could feasibly replace the current regulatory formula.

Suggested Citation

  • Jiri Witzany, 2013. "Estimating Default and Recovery Rate Correlations," Working Papers IES 2013/03, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Apr 2013.
  • Handle: RePEc:fau:wpaper:wp2013_03
    as

    Download full text from publisher

    File URL: http://ies.fsv.cuni.cz/sci/publication/show/id/4830/lang/cs
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Acharya, Viral V. & Bharath, Sreedhar T. & Srinivasan, Anand, 2007. "Does industry-wide distress affect defaulted firms? Evidence from creditor recoveries," Journal of Financial Economics, Elsevier, vol. 85(3), pages 787-821, September.
    2. repec:uts:ppaper:v:18:y:2009:i:1:p:1-26 is not listed on IDEAS
    3. Daniel Rösch & Harald Scheule, 2009. "Credit Portfolio Loss Forecasts for Economic Downturns," Financial Markets, Institutions & Instruments, John Wiley & Sons, vol. 18(1), pages 1-26, February.
    4. repec:czx:journl:v:18:y:2011:i:28:id:183 is not listed on IDEAS
    5. Jon Frye, 2000. "Depressing recoveries," Emerging Issues, Federal Reserve Bank of Chicago, issue Oct.
    6. Stefano Caselli & Stefano Gatti & Francesca Querci, 2008. "The Sensitivity of the Loss Given Default Rate to Systematic Risk: New Empirical Evidence on Bank Loans," Journal of Financial Services Research, Springer;Western Finance Association, vol. 34(1), pages 1-34, August.
    7. Benjamin Bade & Daniel Rösch & Harald Scheule, 2011. "Default and Recovery Risk Dependencies in a Simple Credit Risk Model," European Financial Management, European Financial Management Association, vol. 17(1), pages 120-144, January.
    8. Seidler, Jakub & Horvath, Roman & Jakubík, Petr, 2009. "Estimating expected loss given default in an emerging market: the case of Czech Republic," Journal of Financial Transformation, Capco Institute, vol. 27, pages 103-107.
    9. De Graeve, F. & Kick, T. & Koetter, M., 2008. "Monetary policy and financial (in)stability: An integrated micro-macro approach," Journal of Financial Stability, Elsevier, vol. 4(3), pages 205-231, September.
    10. Dirk Tasche, 2004. "The single risk factor approach to capital charges in case of correlated loss given default rates," Papers cond-mat/0402390, arXiv.org, revised Feb 2004.
    11. Konstantin Belyaev & Aelita Belyaeva & Tomas Konecny & Jakub Seidler & Martin Vojtek, 2012. "Macroeconomic Factors as Drivers of LGD Prediction: Empirical Evidence from the Czech Republic," Working Papers 2012/12, Czech National Bank.
    12. Jiří Witzany, 2017. "Credit Risk Management," Springer Books, Springer, number 978-3-319-49800-3, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Franco Varetto, 2017. "La correlazione tra PD ed LGD nell’analisi del rischio di credito/The correlation between probability of default and loss given default in the credit risk analysis," IRCrES Working Paper 201714, CNR-IRCrES Research Institute on Sustainable Economic Growth - Moncalieri (TO) ITALY - former Institute for Economic Research on Firms and Growth - Torino (TO) ITALY.
    2. Andrey Itkin & Fazlollah Soleymani, 2019. "Four-factor model of Quanto CDS with jumps-at-default and stochastic recovery," Papers 1912.08713, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:czx:journl:v:21:y:2014:i:33:id:210 is not listed on IDEAS
    2. Franco Varetto, 2017. "La correlazione tra PD ed LGD nell’analisi del rischio di credito/The correlation between probability of default and loss given default in the credit risk analysis," IRCrES Working Paper 201714, CNR-IRCrES Research Institute on Sustainable Economic Growth - Moncalieri (TO) ITALY - former Institute for Economic Research on Firms and Growth - Torino (TO) ITALY.
    3. Frank Ranganai Matenda & Mabutho Sibanda & Eriyoti Chikodza & Victor Gumbo, 2022. "Corporate Loan Recovery Rates under Downturn Conditions in a Developing Economy: Evidence from Zimbabwe," Risks, MDPI, vol. 10(10), pages 1-24, October.
    4. Mora, Nada, 2015. "Creditor recovery: The macroeconomic dependence of industry equilibrium," Journal of Financial Stability, Elsevier, vol. 18(C), pages 172-186.
    5. Betz, Jennifer & Kellner, Ralf & Rösch, Daniel, 2018. "Systematic Effects among Loss Given Defaults and their Implications on Downturn Estimation," European Journal of Operational Research, Elsevier, vol. 271(3), pages 1113-1144.
    6. Hibbeln, Martin & Gürtler, Marc, 2011. "Pitfalls in modeling loss given default of bank loans," Working Papers IF35V1, Technische Universität Braunschweig, Institute of Finance.
    7. Barbagli, Matteo & Vrins, Frédéric, 2023. "Accounting for PD-LGD dependency: A tractable extension to the Basel ASRF framework," Economic Modelling, Elsevier, vol. 125(C).
    8. Alexander Becker & Alexander F. R. Koivusalo & Rudi Schafer, 2012. "Empirical Evidence for the Structural Recovery Model," Papers 1203.3188, arXiv.org.
    9. Khieu, Hinh D. & Mullineaux, Donald J. & Yi, Ha-Chin, 2012. "The determinants of bank loan recovery rates," Journal of Banking & Finance, Elsevier, vol. 36(4), pages 923-933.
    10. Annalisa Di Clemente, 2013. "Considering the dependence between the credit loss severity and the probability of default in the estimate of portfolio credit risk: an experimental analysis," STUDI ECONOMICI, FrancoAngeli Editore, vol. 2013(109), pages 5-24.
    11. Natalia Nehrebecka, 2019. "Bank loans recovery rate in commercial banks: A case study of non-financial corporations," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 37(1), pages 139-172.
    12. Thamayanthi Chellathurai, 2017. "Probability Density Of Recovery Rate Given Default Of A Firm’S Debt And Its Constituent Tranches," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(04), pages 1-34, June.
    13. Jean-David Fermanian, 2020. "On the Dependence between Default Risk and Recovery Rates in Structural Models," Annals of Economics and Statistics, GENES, issue 140, pages 45-82.
    14. Jobst, Rainer & Kellner, Ralf & Rösch, Daniel, 2020. "Bayesian loss given default estimation for European sovereign bonds," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1073-1091.
    15. Maria Stefanova, 2012. "Recovery Risiko in der Kreditportfoliomodellierung," Springer Books, Springer, number 978-3-8349-4226-5, January.
    16. Satoshi Yamashita & Toshinao Yoshiba, 2013. "A collateralized loan's loss under a quadratic Gaussian default intensity process," Quantitative Finance, Taylor & Francis Journals, vol. 13(12), pages 1935-1946, December.
    17. Ethan Cohen-Cole, 2007. "Asset liquidity, debt valuation and credit risk," Supervisory Research and Analysis Working Papers QAU07-5, Federal Reserve Bank of Boston.
    18. Qi, Min & Zhao, Xinlei, 2011. "Comparison of modeling methods for Loss Given Default," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2842-2855, November.
    19. Christian Keuschnigg & Linda Kirschner & Michael Kogler & Hannah Winterberg, 2020. "Italy in the Eurozone," CESifo Working Paper Series 8416, CESifo.
    20. Keuschnigg, Christian & Kogler, Michael, 2020. "The Schumpeterian role of banks: Credit reallocation and capital structure," European Economic Review, Elsevier, vol. 121(C).
    21. Michael Moise & James M. O'Brien & John Tschirhart & Emily Yang, 2007. "Bank commercial loan fair value practices," Finance and Economics Discussion Series 2007-29, Board of Governors of the Federal Reserve System (U.S.).

    More about this item

    Keywords

    credit risk; Basel II regulation; default rates; recovery rates; correlation;
    All these keywords.

    JEL classification:

    • G20 - Financial Economics - - Financial Institutions and Services - - - General
    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fau:wpaper:wp2013_03. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Natalie Svarcova (email available below). General contact details of provider: https://edirc.repec.org/data/icunicz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.