IDEAS home Printed from https://ideas.repec.org/p/eti/dpaper/15064.html
   My bibliography  Save this paper

Understanding Two Types of Technological Diversity and their Effects on the Technological Value of Outcomes from Bilateral Inter-firm R&D Alliances

Author

Listed:
  • HUO Dong
  • MOTOHASHI Kazuyuki

Abstract

This study investigates the relationship between the technological value of collaborative research and development (R&D) outcomes and technological diversity in inter-firm R&D alliances. We differentiate technological diversity into two types—relational technological diversity (RTD) and distributional technological diversity (DTD)—and relate them to distinct mechanisms. By empirically analyzing 18,575 granted U.S. patent applications from 1993 to 2002, we find that RTD and DTD is negatively associated and positively associated, respectively, with the technological value of R&D outcomes. In addition, we consider two hypothesized moderators—team size and exploratory degree—in order to examine the moderation effects. The results show that the negative effect of RTD becomes stronger when team size is larger, and the positive effect of DTD becomes greater when an alliance attempts to invent in a less familiar technological field where the exploratory degree is higher. Moreover, we find that RTD and DTD interact in their influences on outcomes.

Suggested Citation

  • HUO Dong & MOTOHASHI Kazuyuki, 2015. "Understanding Two Types of Technological Diversity and their Effects on the Technological Value of Outcomes from Bilateral Inter-firm R&D Alliances," Discussion papers 15064, Research Institute of Economy, Trade and Industry (RIETI).
  • Handle: RePEc:eti:dpaper:15064
    as

    Download full text from publisher

    File URL: https://www.rieti.go.jp/jp/publications/dp/15e064.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bruce Kogut & Udo Zander, 1992. "Knowledge of the Firm, Combinative Capabilities, and the Replication of Technology," Organization Science, INFORMS, vol. 3(3), pages 383-397, August.
    2. Manuel Trajtenberg, 1990. "A Penny for Your Quotes: Patent Citations and the Value of Innovations," RAND Journal of Economics, The RAND Corporation, vol. 21(1), pages 172-187, Spring.
    3. Adam B. Jaffe & Manuel Trajtenberg & Rebecca Henderson, 1993. "Geographic Localization of Knowledge Spillovers as Evidenced by Patent Citations," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(3), pages 577-598.
    4. Rothaermel, Frank T. & Thursby, Marie, 2005. "University-incubator firm knowledge flows: assessing their impact on incubator firm performance," Research Policy, Elsevier, vol. 34(3), pages 305-320, April.
    5. Hagedoorn, John & Cloodt, Myriam, 2003. "Measuring innovative performance: is there an advantage in using multiple indicators?," Research Policy, Elsevier, vol. 32(8), pages 1365-1379, September.
    6. Hagedoorn, John, 2002. "Inter-firm R&D partnerships: an overview of major trends and patterns since 1960," Research Policy, Elsevier, vol. 31(4), pages 477-492, May.
    7. Hausman, Jerry & Hall, Bronwyn H & Griliches, Zvi, 1984. "Econometric Models for Count Data with an Application to the Patents-R&D Relationship," Econometrica, Econometric Society, vol. 52(4), pages 909-938, July.
    8. Belderbos, Rene & Carree, Martin & Lokshin, Boris, 2004. "Cooperative R&D and firm performance," Research Policy, Elsevier, vol. 33(10), pages 1477-1492, December.
    9. Bronwyn H. Hall & Adam B. Jaffe & Manuel Trajtenberg, 2001. "The NBER Patent Citation Data File: Lessons, Insights and Methodological Tools," NBER Working Papers 8498, National Bureau of Economic Research, Inc.
    10. Albert, M. B. & Avery, D. & Narin, F. & McAllister, P., 1991. "Direct validation of citation counts as indicators of industrially important patents," Research Policy, Elsevier, vol. 20(3), pages 251-259, June.
    11. Tong, Xuesong & Frame, J. Davidson, 1994. "Measuring national technological performance with patent claims data," Research Policy, Elsevier, vol. 23(2), pages 133-141, March.
    12. Dietmar Harhoff & Francis Narin & F. M. Scherer & Katrin Vopel, 1999. "Citation Frequency And The Value Of Patented Inventions," The Review of Economics and Statistics, MIT Press, vol. 81(3), pages 511-515, August.
    13. Peter J. Lane & Michael Lubatkin, 1998. "Relative absorptive capacity and interorganizational learning," Post-Print hal-02311860, HAL.
    14. Nooteboom, Bart & Van Haverbeke, Wim & Duysters, Geert & Gilsing, Victor & van den Oord, Ad, 2007. "Optimal cognitive distance and absorptive capacity," Research Policy, Elsevier, vol. 36(7), pages 1016-1034, September.
    15. Belderbos, Rene & Carree, Martin & Lokshin, Boris, 2004. "Cooperative R&D and firm performance," Research Policy, Elsevier, vol. 33(10), pages 1477-1492, December.
    16. Jasjit Singh & Lee Fleming, 2010. "Lone Inventors as Sources of Breakthroughs: Myth or Reality?," Management Science, INFORMS, vol. 56(1), pages 41-56, January.
    17. James G. March, 1991. "Exploration and Exploitation in Organizational Learning," Organization Science, INFORMS, vol. 2(1), pages 71-87, February.
    18. Jaffe, Adam B, 1986. "Technological Opportunity and Spillovers of R&D: Evidence from Firms' Patents, Profits, and Market Value," American Economic Review, American Economic Association, vol. 76(5), pages 984-1001, December.
    19. Patel, Pari & Pavitt, Keith, 1997. "The technological competencies of the world's largest firms: Complex and path-dependent, but not much variety," Research Policy, Elsevier, vol. 26(2), pages 141-156, May.
    20. Miotti, Luis & Sachwald, Frederique, 2003. "Co-operative R&D: why and with whom?: An integrated framework of analysis," Research Policy, Elsevier, vol. 32(8), pages 1481-1499, September.
    21. David J. Teece & Gary Pisano & Amy Shuen, 1997. "Dynamic capabilities and strategic management," Strategic Management Journal, Wiley Blackwell, vol. 18(7), pages 509-533, August.
    22. Corey C. Phelps, 2010. "A longitudinal study of the influence of alliance network structure and composition on firm exploratory innovation," Post-Print hal-00528392, HAL.
    23. Jean O. Lanjouw & Mark Schankerman, 2004. "Patent Quality and Research Productivity: Measuring Innovation with Multiple Indicators," Economic Journal, Royal Economic Society, vol. 114(495), pages 441-465, April.
    24. Balconi, Margherita & Breschi, Stefano & Lissoni, Francesco, 2004. "Networks of inventors and the role of academia: an exploration of Italian patent data," Research Policy, Elsevier, vol. 33(1), pages 127-145, January.
    25. Brian S. Silverman, 1999. "Technological Resources and the Direction of Corporate Diversification: Toward an Integration of the Resource-Based View and Transaction Cost Economics," Management Science, INFORMS, vol. 45(8), pages 1109-1124, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hafezi, Maryam & Zhao, Xuan & Zolfagharinia, Hossein, 2023. "Together we stand? Co-opetition for the development of green products," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1417-1438.
    2. MORI Tomoya & SAKAGUCHI Shosei, 2018. "Collaborative Knowledge Creation: Evidence from Japanese patent data," Discussion papers 18068, Research Institute of Economy, Trade and Industry (RIETI).
    3. Hiroyasu Inoue & Kentaro Nakajima & Yukiko Umeno Saito, 2019. "Localization of collaborations in knowledge creation," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 62(1), pages 119-140, February.
    4. Jacob, Jojo & Belderbos, René & Lokshin, Boris, 2023. "Entangled modes: Boundaries to effective international knowledge sourcing through technology alliances and technology-based acquisitions," Technovation, Elsevier, vol. 122(C).
    5. Tomoya Mori & Shosei Sakaguchi, 2019. "Creation of knowledge through exchanges of knowledge: Evidence from Japanese patent data," Papers 1908.01256, arXiv.org, revised Aug 2020.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huo, Dong & Motohashi, Kazuyuki, 2014. "Dilemma in Individual Collaboration for Invention: Should We be Similar or Diverse in Knowledge?," MPRA Paper 56185, University Library of Munich, Germany.
    2. Huo, Dong & Motohashi, Kazuyuki & Gong, Han, 2019. "Team diversity as dissimilarity and variety in organizational innovation," Research Policy, Elsevier, vol. 48(6), pages 1564-1572.
    3. Peeters, T.J.G., 2013. "External knowledge search and use in new product development," Other publications TiSEM 300ebb34-b090-4210-b95e-f, Tilburg University, School of Economics and Management.
    4. Hur, Wonchang & Oh, Junbyoung, 2021. "A man is known by the company he keeps?: A structural relationship between backward citation and forward citation of patents," Research Policy, Elsevier, vol. 50(1).
    5. Yang, Hongyan & Steensma, H. Kevin, 2014. "When do firms rely on their knowledge spillover recipients for guidance in exploring unfamiliar knowledge?," Research Policy, Elsevier, vol. 43(9), pages 1496-1507.
    6. Choi, Mincheol & Lee, Chang-Yang, 2021. "Technological diversification and R&D productivity: The moderating effects of knowledge spillovers and core-technology competence," Technovation, Elsevier, vol. 104(C).
    7. Wadhwa, Anu & Phelps, Corey & Kotha, Suresh, 2016. "Corporate venture capital portfolios and firm innovation," Journal of Business Venturing, Elsevier, vol. 31(1), pages 95-112.
    8. Sarah Kaplan & Keyvan Vakili, 2015. "The double-edged sword of recombination in breakthrough innovation," Strategic Management Journal, Wiley Blackwell, vol. 36(10), pages 1435-1457, October.
    9. Gino Cattani, 2005. "Preadaptation, Firm Heterogeneity, and Technological Performance: A Study on the Evolution of Fiber Optics, 1970–1995," Organization Science, INFORMS, vol. 16(6), pages 563-580, December.
    10. Wang, Fang, 2024. "Does the recombination of distant scientific knowledge generate valuable inventions? An analysis of pharmaceutical patents," Technovation, Elsevier, vol. 130(C).
    11. Maria Chiara Di Guardo & Kathryn Rudie Harrigan & Elona Marku, 2019. "M&A and diversification strategies: what effect on quality of inventive activity?," Journal of Management & Governance, Springer;Accademia Italiana di Economia Aziendale (AIDEA), vol. 23(3), pages 669-692, September.
    12. Jee, Su Jung & Kwon, Minji & Ha, Jung Moon & Sohn, So Young, 2019. "Exploring the forward citation patterns of patents based on the evolution of technology fields," Journal of Informetrics, Elsevier, vol. 13(4).
    13. Rajat Khanna & Isin Guler, 2022. "Degree assortativity in collaboration networks and invention performance," Strategic Management Journal, Wiley Blackwell, vol. 43(7), pages 1402-1430, July.
    14. Atul Nerkar & Srikanth Paruchuri, 2005. "Evolution of R&D Capabilities: The Role of Knowledge Networks Within a Firm," Management Science, INFORMS, vol. 51(5), pages 771-785, May.
    15. Jason Li-Ying & Yuandi Wang & Lutao Ning, 2016. "How do dynamic capabilities transform external technologies into firms’ renewed technological resources? – A mediation model," Asia Pacific Journal of Management, Springer, vol. 33(4), pages 1009-1036, December.
    16. Kim, Nami & Kim, Eonsoo & Lee, Jongseon, 2021. "Innovating by eliminating: Technological resource divestiture and firms’ innovation performance," Journal of Business Research, Elsevier, vol. 123(C), pages 176-187.
    17. Singh, Jasjit, 2008. "Distributed R&D, cross-regional knowledge integration and quality of innovative output," Research Policy, Elsevier, vol. 37(1), pages 77-96, February.
    18. Ebersberger, Bernd & Feit, Margarita & Mengis, Helen, 2023. "International knowledge interactions and catch-up. Evidence from European patent data for Chinese latecomer firms," International Business Review, Elsevier, vol. 32(2).
    19. Alessandra Scandura, 2019. "The role of scientific and market knowledge in the inventive process: evidence from a survey of industrial inventors," The Journal of Technology Transfer, Springer, vol. 44(4), pages 1029-1069, August.
    20. Isaksson, Olov H.D. & Simeth, Markus & Seifert, Ralf W., 2016. "Knowledge spillovers in the supply chain: Evidence from the high tech sectors," Research Policy, Elsevier, vol. 45(3), pages 699-706.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eti:dpaper:15064. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: TANIMOTO, Toko (email available below). General contact details of provider: https://edirc.repec.org/data/rietijp.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.