IDEAS home Printed from https://ideas.repec.org/p/enp/wpaper/epgr2037.html
   My bibliography  Save this paper

An overview of the electrification of residential and commercial heating and cooling and prospects for decarbonisation

Author

Listed:
  • Mathilde Fajardy

    (EPRG, CJBS, University of Cambridge)

  • David Reiner

    (EPRG, CJBS, University of Cambridge)

Abstract

Heating and cooling are responsible for over 50% of the world’s final energy consumption, and over 40% of global CO2 emissions. With an increasingly decarbonised electricity grid, the electrification of heating offers one potential alternative to the incumbent, heavily fossil-fuel dominated heating system. However, the high penetration of renewables, the high seasonality and hourly variability of heat demand, and an increasing domestic demand for energy services, including cooling, pose significant balancing challenges for both hourly system operation and the long-term investment decision planning of electricity systems. The combination of both demand-response measures and the integration of flexible systems will be required to deliver low carbon heating and cooling, while integrating an increasing share of renewable electricity, and managing peak load. We provide a global overview of the technical, economic and policy challenges and opportunities to decarbonise heating demand through electrification, in the context of rising demand for cooling services.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Mathilde Fajardy & David Reiner, 2020. "An overview of the electrification of residential and commercial heating and cooling and prospects for decarbonisation," Working Papers EPGR2037, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
  • Handle: RePEc:enp:wpaper:epgr2037
    as

    Download full text from publisher

    File URL: https://www.jbs.cam.ac.uk/wp-content/uploads/2023/12/eprg-wp2037.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Labandeira, Xavier & Labeaga, José M. & López-Otero, Xiral, 2017. "A meta-analysis on the price elasticity of energy demand," Energy Policy, Elsevier, vol. 102(C), pages 549-568.
    2. Michelsen, Carl Christian & Madlener, Reinhard, 2012. "Homeowners' preferences for adopting innovative residential heating systems: A discrete choice analysis for Germany," Energy Economics, Elsevier, vol. 34(5), pages 1271-1283.
    3. Nicholas Rivers and Leslie Shiell, 2016. "Free-Riding on Energy Efficiency Subsidies: the Case of Natural Gas Furnaces in Canada," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    4. Curtis, John & McCoy, Daire & Aravena, Claudia, 2018. "Heating system upgrades: The role of knowledge, socio-demographics, building attributes and energy infrastructure," Energy Policy, Elsevier, vol. 120(C), pages 183-196.
    5. He, Xiaoping & Reiner, David, 2016. "Electricity demand and basic needs: Empirical evidence from China's households," Energy Policy, Elsevier, vol. 90(C), pages 212-221.
    6. Louis-Gaëtan Giraudet & Sébastien Houde & Joseph Maher, 2018. "Moral Hazard and the Energy Efficiency Gap: Theory and Evidence," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 5(4), pages 755-790.
    7. Watson, S.D. & Lomas, K.J. & Buswell, R.A., 2019. "Decarbonising domestic heating: What is the peak GB demand?," Energy Policy, Elsevier, vol. 126(C), pages 533-544.
    8. Anna Risch & Claire Salmon, 2017. "What matters in residential energy consumption: evidence from France," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 40(1/2), pages 79-116.
    9. Lange, Ian & Moro, Mirko & Traynor, Laura, 2014. "Green hypocrisy?: Environmental attitudes and residential space heating expenditure," Ecological Economics, Elsevier, vol. 107(C), pages 76-83.
    10. Dorothee Charlier and Sondes Kahouli, 2019. "From Residential Energy Demand to Fuel Poverty: Income-induced Non-linearities in the Reactions of Households to Energy Price Fluctuations," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    11. Janet L. Reyna & Mikhail V. Chester, 2017. "Energy efficiency to reduce residential electricity and natural gas use under climate change," Nature Communications, Nature, vol. 8(1), pages 1-12, August.
    12. Kenneth Gillingham & Amelia Keyes & Karen Palmer, 2018. "Advances in Evaluating Energy Efficiency Policies and Programs," Annual Review of Resource Economics, Annual Reviews, vol. 10(1), pages 511-532, October.
    13. Anna Alberini, Will Gans, and Charles Towe, 2016. "Free Riding, Upsizing, and Energy Efficiency Incentives in Maryland Homes," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
    14. Anna Risch & Claire Salmon, 2017. "What matters in residential energy consumption: evidence from France," International Journal of Global Energy Issues, Inderscience Enterprises Ltd, vol. 40(1/2), pages 79-116.
    15. Grant D. Jacobsen & Matthew J. Kotchen, 2013. "Are Building Codes Effective at Saving Energy? Evidence from Residential Billing Data in Florida," The Review of Economics and Statistics, MIT Press, vol. 95(1), pages 34-49, March.
    16. Louis-Gaëtan Giraudet & Sébastien Houde & Joseph Maher, 2018. "Moral Hazard and the Energy Efficiency Gap: Theory and Evidence," Working Papers hal-01420872, HAL.
    17. Connolly, D. & Lund, H. & Mathiesen, B.V. & Werner, S. & Möller, B. & Persson, U. & Boermans, T. & Trier, D. & Østergaard, P.A. & Nielsen, S., 2014. "Heat Roadmap Europe: Combining district heating with heat savings to decarbonise the EU energy system," Energy Policy, Elsevier, vol. 65(C), pages 475-489.
    18. Cayla, Jean-Michel & Maizi, Nadia & Marchand, Christophe, 2011. "The role of income in energy consumption behaviour: Evidence from French households data," Energy Policy, Elsevier, vol. 39(12), pages 7874-7883.
    19. Ramos, A. & Gago, A. & Labandeira, X. & Linares, P., 2015. "The role of information for energy efficiency in the residential sector," Energy Economics, Elsevier, vol. 52(S1), pages 17-29.
    20. Lechtenböhmer, Stefan & Nilsson, Lars J. & Åhman, Max & Schneider, Clemens, 2016. "Decarbonising the energy intensive basic materials industry through electrification – Implications for future EU electricity demand," Energy, Elsevier, vol. 115(P3), pages 1623-1631.
    21. Keii Gi & Fuminori Sano & Ayami Hayashi & Toshimasa Tomoda & Keigo Akimoto, 2018. "A global analysis of residential heating and cooling service demand and cost-effective energy consumption under different climate change scenarios up to 2050," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(1), pages 51-79, January.
    22. Pedinotti-Castelle, Marianne & Astudillo, Miguel F. & Pineau, Pierre-Olivier & Amor, Ben, 2019. "Is the environmental opportunity of retrofitting the residential sector worth the life cycle cost? A consequential assessment of a typical house in Quebec," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 428-439.
    23. Qadrdan, Meysam & Fazeli, Reza & Jenkins, Nick & Strbac, Goran & Sansom, Robert, 2019. "Gas and electricity supply implications of decarbonising heat sector in GB," Energy, Elsevier, vol. 169(C), pages 50-60.
    24. Dorothée Charlier & Sondès Kahouli, 2019. "From Residential Energy Demand to Fuel Poverty: Income-induced Non-linearities in the Reactions of Households to Energy Price Fluctuations," The Energy Journal, , vol. 40(2), pages 101-138, March.
    25. Jeffrey A. Dubin & Allen K. Miedema & Ram V. Chandran, 1986. "Price Effects of Energy-Efficient Technologies: A Study of Residential Demand for Heating and Cooling," RAND Journal of Economics, The RAND Corporation, vol. 17(3), pages 310-325, Autumn.
    26. Lund, Henrik & Werner, Sven & Wiltshire, Robin & Svendsen, Svend & Thorsen, Jan Eric & Hvelplund, Frede & Mathiesen, Brian Vad, 2014. "4th Generation District Heating (4GDH)," Energy, Elsevier, vol. 68(C), pages 1-11.
    27. Lucas W. Davis & Alan Fuchs & Paul Gertler, 2014. "Cash for Coolers: Evaluating a Large-Scale Appliance Replacement Program in Mexico," American Economic Journal: Economic Policy, American Economic Association, vol. 6(4), pages 207-238, November.
    28. Schulte, Isabella & Heindl, Peter, 2017. "Price and income elasticities of residential energy demand in Germany," Energy Policy, Elsevier, vol. 102(C), pages 512-528.
    29. Arik Levinson, 2016. "How Much Energy Do Building Energy Codes Save? Evidence from California Houses," American Economic Review, American Economic Association, vol. 106(10), pages 2867-2894, October.
    30. Renaldi, R. & Kiprakis, A. & Friedrich, D., 2017. "An optimisation framework for thermal energy storage integration in a residential heat pump heating system," Applied Energy, Elsevier, vol. 186(P3), pages 520-529.
    31. Schweiger, Gerald & Rantzer, Jonatan & Ericsson, Karin & Lauenburg, Patrick, 2017. "The potential of power-to-heat in Swedish district heating systems," Energy, Elsevier, vol. 137(C), pages 661-669.
    32. Werner, Sven, 2017. "International review of district heating and cooling," Energy, Elsevier, vol. 137(C), pages 617-631.
    33. Li, Pei-Hao & Keppo, Ilkka & Strachan, Neil, 2018. "Incorporating homeowners' preferences of heating technologies in the UK TIMES model," Energy, Elsevier, vol. 148(C), pages 716-727.
    34. Eyre, Nick & Baruah, Pranab, 2015. "Uncertainties in future energy demand in UK residential heating," Energy Policy, Elsevier, vol. 87(C), pages 641-653.
    35. Alessia Arteconi & Fabio Polonara, 2018. "Assessing the Demand Side Management Potential and the Energy Flexibility of Heat Pumps in Buildings," Energies, MDPI, vol. 11(7), pages 1-19, July.
    36. Gallo Cassarino, Tiziano & Sharp, Ed & Barrett, Mark, 2018. "The impact of social and weather drivers on the historical electricity demand in Europe," Applied Energy, Elsevier, vol. 229(C), pages 176-185.
    37. Zhang, Xi & Strbac, Goran & Teng, Fei & Djapic, Predrag, 2018. "Economic assessment of alternative heat decarbonisation strategies through coordinated operation with electricity system – UK case study," Applied Energy, Elsevier, vol. 222(C), pages 79-91.
    38. Eid, Cherrelle & Koliou, Elta & Valles, Mercedes & Reneses, Javier & Hakvoort, Rudi, 2016. "Time-based pricing and electricity demand response: Existing barriers and next steps," Utilities Policy, Elsevier, vol. 40(C), pages 15-25.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jai-Oan Cho & Jeong Ik Lee & Staffan Qvist, 2024. "Global Residual Demand Analysis in a Deep Variable Renewable Energy Penetration Scenario for Replacing Coal: A Study of 42 Countries," Energies, MDPI, vol. 17(6), pages 1-15, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dorothée Charlier & Bérangère Legendre, 2020. "Carbon Dioxide Emissions and aging: Disentangling behavior from energy efficiency," Working Papers 2020.13, FAERE - French Association of Environmental and Resource Economists.
    2. Singhal, Puja & Pahle, Michael & Kalkuhl, Matthias & Levesque, Antoine & Sommer, Stephan & Berneiser, Jessica, 2022. "Beyond good faith: Why evidence-based policy is necessary to decarbonize buildings cost-effectively in Germany," Energy Policy, Elsevier, vol. 169(C).
    3. Salomé Bakaloglou and Dorothée Charlier, 2019. "Energy Consumption in the French Residential Sector: How Much do Individual Preferences Matter?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
    4. Yujie Xu & Vivian Loftness & Edson Severnini, 2021. "Using Machine Learning to Predict Retrofit Effects for a Commercial Building Portfolio," Energies, MDPI, vol. 14(14), pages 1-24, July.
    5. Omar Isaac Asensio & Olga Churkina & Becky D. Rafter & Kira E. O’Hare, 2024. "Housing policies and energy efficiency spillovers in low and moderate income communities," Nature Sustainability, Nature, vol. 7(5), pages 590-601, May.
    6. Lang, Ghislaine & Lanz, Bruno, 2022. "Climate policy without a price signal: Evidence on the implicit carbon price of energy efficiency in buildings," Journal of Environmental Economics and Management, Elsevier, vol. 111(C).
    7. Giraudet, Louis-Gaëtan, 2020. "Energy efficiency as a credence good: A review of informational barriers to energy savings in the building sector," Energy Economics, Elsevier, vol. 87(C).
    8. Dorothée Charlier & Bérangère Legendre, 2021. "Carbon Dioxide Emissions and Aging: Disentangling Behavior from Energy Efficiency," Post-Print hal-03877220, HAL.
    9. Dorothée Charlier & Sondès Kahouli, 2019. "From Residential Energy Demand to Fuel Poverty: Income-induced Non-linearities in the Reactions of Households to Energy Price Fluctuations," The Energy Journal, , vol. 40(2), pages 101-138, March.
    10. Joshua Blonz, 2019. "The Welfare Costs of Misaligned Incentives: Energy Inefficiency and the Principal-Agent Problem," Finance and Economics Discussion Series 2019-071, Board of Governors of the Federal Reserve System (U.S.).
    11. Hammerle, Mara & Burke, Paul J., 2022. "From natural gas to electric appliances: Energy use and emissions implications in Australian homes," Energy Economics, Elsevier, vol. 110(C).
    12. Bruno Lanz and Evert Reins, 2021. "Asymmetric Information on the Market for Energy Efficiency: Insights from the Credence Goods Literature," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    13. Davis, Lucas & Martinez, Sebastian & Taboada, Bibiana, 2018. "How Effective is Energy-efficient Housing?: Evidence From a Field Experiment in Mexico," IDB Publications (Working Papers) 8767, Inter-American Development Bank.
    14. Golmohamadi, Hessam & Larsen, Kim Guldstrand & Jensen, Peter Gjøl & Hasrat, Imran Riaz, 2022. "Integration of flexibility potentials of district heating systems into electricity markets: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    15. Bakaloglou, Salomé & Charlier, Dorothée, 2021. "The role of individual preferences in explaining the energy performance gap," Energy Economics, Elsevier, vol. 104(C).
    16. Curtis, John & Tovar, Miguel Angel & Grilli, Gianluca, 2020. "Access to and consumption of natural gas: Spatial and socio-demographic drivers," Energy Policy, Elsevier, vol. 143(C).
    17. Salomé Bakaloglou & Dorothée Charlier, 2018. "The role of individual preferences to explain the energy performance gap," Working Papers 2018.15, FAERE - French Association of Environmental and Resource Economists.
    18. Dorothée CHARLIER & Mouez FODHA & Djamel KIRAT, 2021. "CO2 Emissions from the Residential Sector in Europe: Some Insights form a Country-Level Assessment," LEO Working Papers / DR LEO 2849, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    19. Stéphane Poncin, 2018. "Energy policy tools in Luxembourg - Assessing their impact on households’ space heating energy consumption and CO2 emissions by means of the LuxHEI model," DEM Discussion Paper Series 18-23, Department of Economics at the University of Luxembourg.
    20. Schaufele, Brandon, 2021. "Lessons from a utility-sponsored revenue neutral electricity conservation program," Energy Policy, Elsevier, vol. 150(C).

    More about this item

    Keywords

    heating; cooling; electrification; decarbonisation; peak load management; demand response;
    All these keywords.

    JEL classification:

    • L95 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Gas Utilities; Pipelines; Water Utilities
    • O13 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Agriculture; Natural Resources; Environment; Other Primary Products
    • Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:enp:wpaper:epgr2037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ruth Newman (email available below). General contact details of provider: https://edirc.repec.org/data/jicamuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.