IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

On the Phelps-Koopmans Theorem

  • Mitra, Tapan

    (Cornell University)

  • Ray, Debraj

    (New York University)

We examine whether the Phelps-Koopmans theorem is valid in models with nonconvex production technologies. We show by example that a nonstationary path that converges to a capital stock above the smallest golden rule may indeed be efficient. This finding has the important implication that "capital overaccumulation" need not always imply inefficiency. We provide general conditions on the production function under which all paths that have a limit in excess of the smallest golden rule must be efficient, which proves a version of the theorem in the nonconvex case. Finally, we show by example that a nonconvergent path with limiting capital stocks bounded above (and away from) the smallest golden rule can be efficient, even if the model admits a unique golden rule. Thus the Phelps-Koopmans theorem in its general form fails to be valid.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.arts.cornell.edu/econ/CAE/09-04.pdf
Our checks indicate that this address may not be valid because: 404 Not Found (http://www.arts.cornell.edu/econ/CAE/09-04.pdf [301 Moved Permanently]--> http://www.economics.cornell.edu/CAE/09-04.pdf). If this is indeed the case, please notify ()


Download Restriction: no

Paper provided by Cornell University, Center for Analytic Economics in its series Working Papers with number 09-04.

as
in new window

Length:
Date of creation: Feb 2009
Date of revision:
Handle: RePEc:ecl:corcae:09-04
Contact details of provider: Postal: 402 Uris Hall, Ithaca, NY 14853
Phone: (607) 255-9901
Fax: (607) 255-2818
Web page: http://www.arts.cornell.edu/econ/CAE/workingpapers.html
More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Cass, David, 1972. "On capital overaccumulation in the aggregative, neoclassical model of economic growth: A complete characterization," Journal of Economic Theory, Elsevier, vol. 4(2), pages 200-223, April.
  2. Majumdar, Mukul & Mitra, Tapan, 1982. "Intertemporal allocation with a non-convex technology: The aggregative framework," Journal of Economic Theory, Elsevier, vol. 27(1), pages 101-136, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ecl:corcae:09-04. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.