IDEAS home Printed from https://ideas.repec.org/p/ecb/ecbwps/20101255.html
   My bibliography  Save this paper

Predicting recession probabilities with financial variables over multiple horizons

Author

Listed:
  • Fornari, Fabio
  • Lemke, Wolfgang

Abstract

We forecast recession probabilities for the United States, Germany and Japan. The predictions are based on the widely-used probit approach, but the dynamics of regressors are endogenized using a VAR. The combined model is called a JEL Classification: C25, C32, E32, E37

Suggested Citation

  • Fornari, Fabio & Lemke, Wolfgang, 2010. "Predicting recession probabilities with financial variables over multiple horizons," Working Paper Series 1255, European Central Bank.
  • Handle: RePEc:ecb:ecbwps:20101255
    Note: 495651
    as

    Download full text from publisher

    File URL: https://www.ecb.europa.eu//pub/pdf/scpwps/ecbwp1255.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jonas Dovern & Christina Ziegler, 2008. "Predicting Growth Rates and Recessions. Assessing U.S. Leading Indicators under Real-Time Condition," Applied Economics Quarterly (formerly: Konjunkturpolitik), Duncker & Humblot, Berlin, vol. 54(4), pages 293-318.
    2. Marcellino, Massimiliano & Stock, James H. & Watson, Mark W., 2006. "A comparison of direct and iterated multistep AR methods for forecasting macroeconomic time series," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 499-526.
    3. Michael Dueker, 2005. "Dynamic Forecasts of Qualitative Variables: A Qual VAR Model of U.S. Recessions," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 96-104, January.
    4. Antonello D'Agostino & Domenico Giannone & Paolo Surico, 2005. "(Un)Predictability and Macroeconomic Stability," Macroeconomics 0510024, University Library of Munich, Germany.
    5. Arturo Estrella & Anthony P. Rodrigues & Sebastian Schich, 2003. "How Stable is the Predictive Power of the Yield Curve? Evidence from Germany and the United States," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 629-644, August.
    6. Engemann, Kristie M. & Kliesen, Kevin L. & Owyang, Michael T., 2011. "Do Oil Shocks Drive Business Cycles? Some U.S. And International Evidence," Macroeconomic Dynamics, Cambridge University Press, vol. 15(S3), pages 498-517, November.
    7. Hideaki Hirata & Kazuo Ueda, 1998. "The Yield Spread as a Predictor of Japanese Recessions," Working Paper 164501, Harvard University OpenScholar.
    8. Heikki Kauppi & Pentti Saikkonen, 2008. "Predicting U.S. Recessions with Dynamic Binary Response Models," The Review of Economics and Statistics, MIT Press, vol. 90(4), pages 777-791, November.
    9. Henri Nyberg, 2010. "Dynamic probit models and financial variables in recession forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 215-230.
    10. Estrella, Arturo & Hardouvelis, Gikas A, 1991. "The Term Structure as a Predictor of Real Economic Activity," Journal of Finance, American Finance Association, vol. 46(2), pages 555-576, June.
    11. Bellégo, C. & Ferrara, L., 2009. "Forecasting Euro-area recessions using time-varying binary response models for financial," Working papers 259, Banque de France.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Makram El-Shagi & Gregor von Schweinitz, 2016. "Qual VAR revisited: Good forecast, bad story," Journal of Applied Economics, Universidad del CEMA, vol. 19, pages 293-322, November.
    2. Sebastian Ankargren & Mårten Bjellerup & Hovick Shahnazarian, 2017. "The importance of the financial system for the real economy," Empirical Economics, Springer, vol. 53(4), pages 1553-1586, December.
    3. Gross, Marco, 2011. "Corporate bond spreads and real activity in the euro area - Least Angle Regression forecasting and the probability of the recession," Working Paper Series 1286, European Central Bank.
    4. Karnizova, Lilia & Li, Jiaxiong (Chris), 2014. "Economic policy uncertainty, financial markets and probability of US recessions," Economics Letters, Elsevier, vol. 125(2), pages 261-265.
    5. Michael W. McCracken & Joseph McGillicuddy & Michael T. Owyang, 2019. "Binary Conditional Forecasts," Working Papers 2019-029, Federal Reserve Bank of St. Louis, revised Apr 2021.
    6. Babecký, Jan & Havránek, Tomáš & Matějů, Jakub & Rusnák, Marek & Šmídková, Kateřina & Vašíček, Bořek, 2013. "Leading indicators of crisis incidence: Evidence from developed countries," Journal of International Money and Finance, Elsevier, vol. 35(C), pages 1-19.
    7. Baumann, Ursel & Gómez-Salvador, Ramón & Seitz, Franz, 2019. "Detecting turning points in global economic activity," Working Paper Series 2310, European Central Bank.
    8. Pirschel, Inske, 2015. "Forecasting Euro Area Recessions in real-time with a mixed-frequency Bayesian VAR," VfS Annual Conference 2015 (Muenster): Economic Development - Theory and Policy 113031, Verein für Socialpolitik / German Economic Association.
    9. Stefan Gebauer, 2017. "The Use of Financial Market Variables in Forecasting," DIW Roundup: Politik im Fokus 115, DIW Berlin, German Institute for Economic Research.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jean-Baptiste Hasse & Quentin Lajaunie, 2020. "Does the Yield Curve Signal Recessions? New Evidence from an International Panel Data Analysis," Working Papers halshs-02549044, HAL.
    2. Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017. "Predicting recessions with boosted regression trees," International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
    3. Fernandez-Perez, Adrian & Fernández-Rodríguez, Fernando & Sosvilla-Rivero, Simón, 2014. "The term structure of interest rates as predictor of stock returns: Evidence for the IBEX 35 during a bear market," International Review of Economics & Finance, Elsevier, vol. 31(C), pages 21-33.
    4. Rebecca Stuart, 2020. "Monetary regimes, the term structure and business cycles in Ireland, 1972–2018," Manchester School, University of Manchester, vol. 88(5), pages 731-748, September.
    5. Ratcliff, Ryan, 2013. "The “probability of recession”: Evaluating probabilistic and non-probabilistic forecasts from probit models of U.S. recessions," Economics Letters, Elsevier, vol. 121(2), pages 311-315.
    6. Henri Nyberg, 2010. "Dynamic probit models and financial variables in recession forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 215-230.
    7. Ng, Eric C.Y., 2012. "Forecasting US recessions with various risk factors and dynamic probit models," Journal of Macroeconomics, Elsevier, vol. 34(1), pages 112-125.
    8. Vasilios Plakandaras & Juncal Cunado & Rangan Gupta & Mark E. Wohar, 2016. "Do Leading Indicators Forecast U.S. Recessions? A Nonlinear Re-Evaluation Using Historical Data," Working Papers 201685, University of Pretoria, Department of Economics.
    9. Quentin LAJAUNIE, 2021. "Nonlinear Impulse Response Function for Dichotomous Models," LEO Working Papers / DR LEO 2852, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.
    10. Bellégo, C. & Ferrara, L., 2009. "Forecasting Euro-area recessions using time-varying binary response models for financial," Working papers 259, Banque de France.
    11. Proaño, Christian R. & Theobald, Thomas, 2014. "Predicting recessions with a composite real-time dynamic probit model," International Journal of Forecasting, Elsevier, vol. 30(4), pages 898-917.
    12. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    13. Antunes, António & Bonfim, Diana & Monteiro, Nuno & Rodrigues, Paulo M.M., 2018. "Forecasting banking crises with dynamic panel probit models," International Journal of Forecasting, Elsevier, vol. 34(2), pages 249-275.
    14. Hännikäinen, Jari, 2017. "When does the yield curve contain predictive power? Evidence from a data-rich environment," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1044-1064.
    15. Leo Krippner & Leif Anders Thorsrud, 2009. "Forecasting New Zealand's economic growth using yield curve information," Reserve Bank of New Zealand Discussion Paper Series DP2009/18, Reserve Bank of New Zealand.
    16. David C. Wheelock & Mark E. Wohar, 2009. "Can the term spread predict output growth and recessions? a survey of the literature," Review, Federal Reserve Bank of St. Louis, vol. 91(Sep), pages 419-440.
    17. Vrontos, Spyridon D. & Galakis, John & Vrontos, Ioannis D., 2021. "Modeling and predicting U.S. recessions using machine learning techniques," International Journal of Forecasting, Elsevier, vol. 37(2), pages 647-671.
    18. Christiansen, Charlotte & Eriksen, Jonas Nygaard & Møller, Stig Vinther, 2014. "Forecasting US recessions: The role of sentiment," Journal of Banking & Finance, Elsevier, vol. 49(C), pages 459-468.
    19. Christiansen, Charlotte & Eriksen, Jonas N. & Møller, Stig V., 2019. "Negative house price co-movements and US recessions," Regional Science and Urban Economics, Elsevier, vol. 77(C), pages 382-394.
    20. Henri Nyberg, 2018. "Forecasting US interest rates and business cycle with a nonlinear regime switching VAR model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 37(1), pages 1-15, January.

    More about this item

    Keywords

    forecasting; Probit; recessions; VAR;
    All these keywords.

    JEL classification:

    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • E32 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Business Fluctuations; Cycles
    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecb:ecbwps:20101255. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Official Publications). General contact details of provider: https://edirc.repec.org/data/emieude.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.