IDEAS home Printed from https://ideas.repec.org/p/eca/wpaper/2013-250239.html
   My bibliography  Save this paper

Halfspace Depths for Scatter, Concentration and Shape Matrices

Author

Listed:
  • Davy Paindaveine
  • Germain Van Bever

Abstract

We propose halfspace depth concepts for scatter, concentration and shape matrices. For scatter matrices, our concept extends the one from Chen, Gao and Ren (2015) to the non-centered case, and is in the same spirit as the one in Zhang (2002). Rather than focusing, as in these earlier works, on deepest scatter matrices, we thoroughly investigate the properties of the proposed depth and of the corresponding depth regions. We do so under minimal assumptions and, in particular, we do not restrict to elliptical distributions nor to absolutely continuous distributions. Interestingly, fully understanding scatter halfspace depth requires considering different geometries/topologies on the space of scatter matrices. We also discuss, in the spirit of Zuo and Serfling (2000), the structural properties a scatter depth should satisfy, and investigate whether or not these are met by the proposed depth. As mentioned above, companion concepts of depth for concentration matrices and shape matrices are also proposed and studied. We illustrate the practical relevance of the proposed concepts by considering a real-data example from finance.

Suggested Citation

  • Davy Paindaveine & Germain Van Bever, 2017. "Halfspace Depths for Scatter, Concentration and Shape Matrices," Working Papers ECARES ECARES 2017-19, ULB -- Universite Libre de Bruxelles.
  • Handle: RePEc:eca:wpaper:2013/250239
    as

    Download full text from publisher

    File URL: https://dipot.ulb.ac.be/dspace/bitstream/2013/250239/3/2017-19-PAINDAVEINE_VANBEVER-halfspace.pdf
    File Function: Full text for the whole work, or for a work part
    Download Restriction: no

    References listed on IDEAS

    as
    1. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Rejoinder to ‘multivariate functional outlier detection’," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 269-277, July.
    2. Thomas P. Hettmansperger, 2002. "A practical affine equivariant multivariate median," Biometrika, Biometrika Trust, vol. 89(4), pages 851-860, December.
    3. Taskinen, Sara & Croux, Christophe & Kankainen, Annaliisa & Ollila, Esa & Oja, Hannu, 2006. "Influence functions and efficiencies of the canonical correlation and vector estimates based on scatter and shape matrices," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 359-384, February.
    4. Frahm, Gabriel, 2009. "Asymptotic distributions of robust shape matrices and scales," Journal of Multivariate Analysis, Elsevier, vol. 100(7), pages 1329-1337, August.
    5. Sirkku Pauliina Ilmonen & Davy Paindaveine, 2011. "Semiparametrically Efficient Inference Based on Signed Ranks in Symmetric Independent Component Models," Working Papers ECARES ECARES 2011-003, ULB -- Universite Libre de Bruxelles.
    6. Marc Hallin & Davy Paindaveine & Miroslav Siman, 2008. "Multivariate quantiles and multiple-output regression quantiles: from L1 optimization to halfspace depth," Working Papers ECARES 2008_042, ULB -- Universite Libre de Bruxelles.
    7. Nordhausen, Klaus & Oja, Hannu & Paindaveine, Davy, 2009. "Signed-rank tests for location in the symmetric independent component model," Journal of Multivariate Analysis, Elsevier, vol. 100(5), pages 821-834, May.
    8. Davy Paindaveine & Germain Van Bever, 2012. "Nonparametrically Consistent Depth-Based Classifiers," Working Papers ECARES ECARES 2012-014, ULB -- Universite Libre de Bruxelles.
    9. Lutz Dümbgen & David E. Tyler, 2005. "On the Breakdown Properties of Some Multivariate M-Functionals," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(2), pages 247-264.
    10. Anil K. Ghosh & Probal Chaudhuri, 2005. "On Maximum Depth and Related Classifiers," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 32(2), pages 327-350.
    11. Liesa Denecke & Christine Müller, 2014. "Consistency of the likelihood depth estimator for the correlation coefficient," Statistical Papers, Springer, vol. 55(1), pages 3-13, February.
    12. Davy Paindaveine & Germain Van Bever, 2013. "Inference on the Shape of Elliptical Distribution Based on the MCD," Working Papers ECARES ECARES 2013-27, ULB -- Universite Libre de Bruxelles.
    13. Gerda Claeskens & Mia Hubert & Leen Slaets & Kaveh Vakili, 2014. "Multivariate Functional Halfspace Depth," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 411-423, March.
    14. Denecke, Liesa & Müller, Christine H., 2011. "Robust estimators and tests for bivariate copulas based on likelihood depth," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2724-2738, September.
    15. Davy Paindaveine & Germain Van bever, 2013. "From Depth to Local Depth: A Focus on Centrality," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(503), pages 1105-1119, September.
    16. Cuesta-Albertos, J.A. & Nieto-Reyes, A., 2008. "The random Tukey depth," Computational Statistics & Data Analysis, Elsevier, vol. 52(11), pages 4979-4988, July.
    17. Paindaveine, Davy & Van Bever, Germain, 2014. "Inference on the shape of elliptical distributions based on the MCD," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 125-144.
    18. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
    19. Anirvan Chakraborty & Probal Chaudhuri, 2014. "On data depth in infinite dimensional spaces," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(2), pages 303-324, April.
    20. López-Pintado, Sara & Romo, Juan, 2009. "On the Concept of Depth for Functional Data," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 718-734.
    21. Zhang, Jian, 2002. "Some Extensions of Tukey's Depth Function," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 134-165, July.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eca:wpaper:2013/250239. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Benoit Pauwels). General contact details of provider: http://edirc.repec.org/data/arulbbe.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.