IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v22y2010i7p915-936.html
   My bibliography  Save this article

Equivariance and invariance properties of multivariate quantile and related functions, and the role of standardisation

Author

Listed:
  • Robert Serfling

Abstract

Equivariance and invariance issues arise as a fundamental but often problematic aspect of multivariate statistical analysis. For multivariate quantile and related functions, we provide coherent definitions of these properties. For standardisation of multivariate data to produce equivariance or invariance of procedures, three important types of matrix-valued functional are studied: ‘weak covariance’ (or ‘shape’), ‘transformation–retransformation’ (TR), and ‘strong invariant coordinate system’ (SICS). The clarification of TR affine equivariant versions of the sample spatial quantile function is obtained. It is seen that geometric artefacts of SICS-standardised data are invariant under affine transformation of the original data followed by standardisation using the same SICS functional, subject only to translation and homogeneous scale change. Some applications of SICS standardisation are described.

Suggested Citation

  • Robert Serfling, 2010. "Equivariance and invariance properties of multivariate quantile and related functions, and the role of standardisation," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 22(7), pages 915-936.
  • Handle: RePEc:taf:gnstxx:v:22:y:2010:i:7:p:915-936
    DOI: 10.1080/10485250903431710
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485250903431710
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamel, Andreas H. & Kostner, Daniel, 2018. "Cone distribution functions and quantiles for multivariate random variables," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 97-113.
    2. Jean-Paul Chavas, 2018. "On multivariate quantile regression analysis," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 27(3), pages 365-384, August.
    3. Marc Hallin & Davy Paindaveine & Miroslav Siman, 2008. "Multivariate quantiles and multiple-output regression quantiles: from L1 optimization to halfspace depth," Working Papers ECARES 2008_042, ULB -- Universite Libre de Bruxelles.
    4. Yi He & John H. J. Einmahl, 2017. "Estimation of extreme depth-based quantile regions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(2), pages 449-461, March.
    5. Ilmonen, Pauliina & Nevalainen, Jaakko & Oja, Hannu, 2010. "Characteristics of multivariate distributions and the invariant coordinate system," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1844-1853, December.
    6. Xin Dang & Hailin Sang & Lauren Weatherall, 2019. "Gini covariance matrix and its affine equivariant version," Statistical Papers, Springer, vol. 60(3), pages 641-666, June.
    7. Ramsay, Kelly & Durocher, Stephane & Leblanc, Alexandre, 2021. "Robustness and asymptotics of the projection median," Journal of Multivariate Analysis, Elsevier, vol. 181(C).
    8. Dai, Wenlin & Genton, Marc G., 2019. "Directional outlyingness for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 50-65.
    9. Davy Paindaveine & Germain Van Bever, 2015. "Discussion of “Multivariate Functional Outlier Detection”, by Mia Hubert, Peter Rousseeuw and Pieter Segaert," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 223-231, July.
    10. Wang, Shanshan & Serfling, Robert, 2018. "On masking and swamping robustness of leading nonparametric outlier identifiers for multivariate data," Journal of Multivariate Analysis, Elsevier, vol. 166(C), pages 32-49.
    11. Ramsay, Kelly & Durocher, Stéphane & Leblanc, Alexandre, 2019. "Integrated rank-weighted depth," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 51-69.
    12. Dominicy, Yves & Heikkilä, Matias & Ilmonen, Pauliina & Veredas, David, 2020. "Flexible multivariate Hill estimators," Journal of Econometrics, Elsevier, vol. 217(2), pages 398-410.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:22:y:2010:i:7:p:915-936. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Chris Longhurst). General contact details of provider: http://www.tandfonline.com/GNST20 .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.