IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Log in (now much improved!) to save this paper

Tyler Shape Depth

Listed author(s):
  • Davy Paindaveine
  • Germain Van Bever

In many problems from multivariate analysis (principal component analysis, testing for sphericity, etc.), the parameter of interest is a shape matrix, that is, a normalised version of the corresponding scatter or dispersion matrix. In this paper, we propose a depth concept for shape matrices which is of a sign nature, in the sense that it involves data points only through their directions from the center of the distribution. We use the terminology Tyler shape depth since the resulting estimator of shape — namely, the deepest shape matrix — is the depth-based counterpart of the celebrated M-estimator of shape from Tyler (1987). We in- vestigate the invariance, quasi-concavity and continuity properties of Tyler shape depth, as well as the topological and boundedness properties of the corresponding depth regions. We study existence of a deepest shape matrix and prove Fisher consistency in the elliptical case. We derive a Glivenko-Cantelli-type result and establish the almost sure consistency of the deepest shape matrix estimator. We also consider depth-based tests for shape and investigate their finite-sample per- formances through simulations. Finally, we illustrate the practical relevance of the proposed depth concept on a real data example.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: https://dipot.ulb.ac.be/dspace/bitstream/2013/255000/3/2017-29-PAINDAVEINE_VANBEVER-Tyler.pdf
File Function: Full text for the whole work, or for a work part
Download Restriction: no

Paper provided by ULB -- Universite Libre de Bruxelles in its series Working Papers ECARES with number ECARES 2017-29.

as
in new window

Length: 27 p.
Date of creation: Jul 2017
Publication status: Published by:
Handle: RePEc:eca:wpaper:2013/255000
Contact details of provider: Postal:
Av. F.D., Roosevelt, 39, 1050 Bruxelles

Phone: (32 2) 650 30 75
Fax: (32 2) 650 44 75
Web page: http://difusion.ulb.ac.be

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as
in new window


  1. Thomas P. Hettmansperger, 2002. "A practical affine equivariant multivariate median," Biometrika, Biometrika Trust, vol. 89(4), pages 851-860, December.
  2. Hallin Marc & Paindaveine Davy, 2006. "Parametric and semiparametric inference for shape: the role of the scale functional," Statistics & Risk Modeling, De Gruyter, vol. 24(3), pages 1-24, December.
  3. Davy Paindaveine & Germain Van Bever, 2013. "Inference on the Shape of Elliptical Distribution Based on the MCD," Working Papers ECARES ECARES 2013-27, ULB -- Universite Libre de Bruxelles.
  4. Paindaveine, Davy & Van Bever, Germain, 2014. "Inference on the shape of elliptical distributions based on the MCD," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 125-144.
  5. Zhang, Jian, 2002. "Some Extensions of Tukey's Depth Function," Journal of Multivariate Analysis, Elsevier, vol. 82(1), pages 134-165, July.
  6. Marc Hallin & Davy Paindaveine & Miroslav Siman, 2008. "Multivariate quantiles and multiple-output regression quantiles: from L1 optimization to halfspace depth," Working Papers ECARES 2008_042, ULB -- Universite Libre de Bruxelles.
  7. Müller, Christine H., 2005. "Depth estimators and tests based on the likelihood principle with application to regression," Journal of Multivariate Analysis, Elsevier, vol. 95(1), pages 153-181, July.
  8. Paindaveine, Davy, 2008. "A canonical definition of shape," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2240-2247, October.
  9. Lutz Dümbgen, 1998. "On Tyler's M-Functional of Scatter in High Dimension," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 50(3), pages 471-491, September.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:eca:wpaper:2013/255000. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Benoit Pauwels)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.