IDEAS home Printed from
   My bibliography  Save this paper

On the Non Gaussian Asymptotics of the Likelihood Ratio Test Statistic for Homogeneity of Covariance


  • Marc Hallin


The likelihood ratio test for m-sample homogeneity of covariance is notoriously sensitive to the violations of Gaussian assumptions. Its asymptotic behavior under non-Gaussian densities has been the subject of an abundant literature. In a recent paper, Yanagihara et al. (2005) show that the asymptotic distribution of the likelihood ratio test statistic, under arbitrary elliptical densities with finite fourth-order moments, is that of a linear combination of two mutually independent chi-square variables. Their proof is based on characteristic function methods, and only allows for convergence in distribution conclusions. Moreover, they require homokurticity among the m populations. Exploiting the findings of Hallin and Paindaveine (2008a), we reinforce that convergence-in-distribution result into a convergence-in- probability one —-that is, we explicitly decompose the likelihood ratio test statistic into a linear combination of two variables which are asymptotically independent chi-square —-and moreover extend it to the heterokurtic case.

Suggested Citation

  • Marc Hallin, 2008. "On the Non Gaussian Asymptotics of the Likelihood Ratio Test Statistic for Homogeneity of Covariance," Working Papers ECARES 2008_039, ULB -- Universite Libre de Bruxelles.
  • Handle: RePEc:eca:wpaper:2008_039

    Download full text from publisher

    File URL:
    File Function: RePEc_eca_wpaper_2008_039
    Download Restriction: no

    References listed on IDEAS

    1. Wakaki, Hirofumi & Eguchi, Shinto & Fujikoshi, Yasunori, 1990. "A class of tests for a general covariance structure," Journal of Multivariate Analysis, Elsevier, vol. 32(2), pages 313-325, February.
    2. Srivastava, M. S. & Khatri, C. G. & Carter, E. M., 1978. "On monotonicity of the modified likelihood ratio test for the equality of two covariances," Journal of Multivariate Analysis, Elsevier, vol. 8(2), pages 262-267, June.
    3. Arjun Gupta & Jin Xu, 2006. "On Some Tests of the Covariance Matrix Under General Conditions," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 58(1), pages 101-114, March.
    4. Hallin Marc & Paindaveine Davy, 2006. "Parametric and semiparametric inference for shape: the role of the scale functional," Statistics & Risk Modeling, De Gruyter, vol. 24(3), pages 1-24, December.
    5. Nagao, Hisao & Srivastava, M. S., 1992. "On the distributions of some test criteria for a covariance matrix under local alternatives and bootstrap approximations," Journal of Multivariate Analysis, Elsevier, vol. 43(2), pages 331-350, November.
    6. Paindaveine, Davy, 2008. "A canonical definition of shape," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2240-2247, October.
    7. Hallin, Marc & Paindaveine, Davy, 2009. "Optimal tests for homogeneity of covariance, scale, and shape," Journal of Multivariate Analysis, Elsevier, vol. 100(3), pages 422-444, March.
    8. Yanagihara, Hirokazu & Tonda, Tetsuji & Matsumoto, Chieko, 2005. "The effects of nonnormality on asymptotic distributions of some likelihood ratio criteria for testing covariance structures under normal assumption," Journal of Multivariate Analysis, Elsevier, vol. 96(2), pages 237-264, October.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eca:wpaper:2008_039. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Benoit Pauwels). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.