IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Tilted Nonparametric Estimation of Volatility Functions

This paper proposes a novel positive nonparametric estimator of the conditional variance function without reliance on logarithmic or other transformations. The estimator is based on an empirical likelihood modification of conventional local level nonparametric regression applied to squared mean regression residuals. The estimator is shown to be asymptotically equivalent to the local linear estimator in the case of unbounded support but, unlike that estimator, is restricted to be non-negative in finite samples. It is fully adaptive to the unknown conditional mean function. Simulations are conducted to evaluate the finite sample performance of the estimator. Two empirical applications are reported. One uses cross section data and studies the relationship between occupational prestige and income. The other uses time series data on Treasury bill rates to fit the total volatility function in a continuous-time jump diffusion model.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://cowles.econ.yale.edu/P/cd/d16a/d1612.pdf
Download Restriction: no

Paper provided by Cowles Foundation for Research in Economics, Yale University in its series Cowles Foundation Discussion Papers with number 1612.

as
in new window

Length: 31 pages
Date of creation: Jun 2007
Date of revision: Jul 2010
Publication status: Published in Journal of Business and Economic Statistics (October 2011), 29(4): 518–528
Handle: RePEc:cwl:cwldpp:1612
Note: CFP 1337.
Contact details of provider: Postal: Yale University, Box 208281, New Haven, CT 06520-8281 USA
Phone: (203) 432-3702
Fax: (203) 432-6167
Web page: http://cowles.econ.yale.edu/

More information through EDIRC

Order Information: Postal: Cowles Foundation, Yale University, Box 208281, New Haven, CT 06520-8281 USA

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Hansen, Bruce E, 1995. "Regression with Nonstationary Volatility," Econometrica, Econometric Society, vol. 63(5), pages 1113-32, September.
  2. Moloche, Guillermo, 2001. "Local Nonparametric Estimation of Scalar Diffusions," MPRA Paper 46154, University Library of Munich, Germany.
  3. Yu, K. & Jones, M.C., 2004. "Likelihood-Based Local Linear Estimation of the Conditional Variance Function," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 139-144, January.
  4. Federico M. Bandi & Peter C. B. Phillips, 2003. "Fully Nonparametric Estimation of Scalar Diffusion Models," Econometrica, Econometric Society, vol. 71(1), pages 241-283, January.
  5. Cai, Zongwu, 2001. "Weighted Nadaraya-Watson regression estimation," Statistics & Probability Letters, Elsevier, vol. 51(3), pages 307-318, February.
  6. Guido Imbens & Thomas Lemieux, 2007. "Regression Discontinuity Designs: A Guide to Practice," NBER Technical Working Papers 0337, National Bureau of Economic Research, Inc.
  7. Pagan, Adrian R. & Schwert, G. William, 1990. "Alternative models for conditional stock volatility," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 267-290.
  8. Hahn, Jinyong & Todd, Petra & Van der Klaauw, Wilbert, 2001. "Identification and Estimation of Treatment Effects with a Regression-Discontinuity Design," Econometrica, Econometric Society, vol. 69(1), pages 201-09, January.
  9. Gozalo, Pedro & Linton, Oliver, 2000. "Local nonlinear least squares: Using parametric information in nonparametric regression," Journal of Econometrics, Elsevier, vol. 99(1), pages 63-106, November.
  10. P. Hall & B. Presnell, 1999. "Intentionally biased bootstrap methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 143-158.
  11. Xu, Ke-Li, 2010. "Reweighted Functional Estimation Of Diffusion Models," Econometric Theory, Cambridge University Press, vol. 26(02), pages 541-563, April.
  12. Cai, Zongwu, 2002. "Regression Quantiles For Time Series," Econometric Theory, Cambridge University Press, vol. 18(01), pages 169-192, February.
  13. Fan J. & Zhang C., 2003. "A Reexamination of Diffusion Estimators With Applications to Financial Model Validation," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 118-134, January.
  14. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355, April.
  15. Bandi, Federico M. & Nguyen, Thong H., 2003. "On the functional estimation of jump-diffusion models," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 293-328.
  16. Yacine Ait-Sahalia, 1995. "Nonparametric Pricing of Interest Rate Derivative Securities," NBER Working Papers 5345, National Bureau of Economic Research, Inc.
  17. Stanton, Richard, 1997. " A Nonparametric Model of Term Structure Dynamics and the Market Price of Interest Rate Risk," Journal of Finance, American Finance Association, vol. 52(5), pages 1973-2002, December.
  18. Charles Quanwei Cao & Gurdip S. Bakshi & Zhiwu Chen, 1997. "Empirical Performance of Alternative Option Pricing Models," Yale School of Management Working Papers ysm65, Yale School of Management.
  19. Kim, Woocheol & Linton, Oliver, 2004. "The Live Method For Generalized Additive Volatility Models," Econometric Theory, Cambridge University Press, vol. 20(06), pages 1094-1139, December.
  20. Wolfgang HÄRDLE & A. TSYBAKOV, 1995. "Local Polynomial Estimators of the Volatility Function in Nonparametric Autoregression," SFB 373 Discussion Papers 1995,42, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
  21. Bjørn Eraker & Michael Johannes & Nicholas Polson, 2003. "The Impact of Jumps in Volatility and Returns," Journal of Finance, American Finance Association, vol. 58(3), pages 1269-1300, 06.
  22. Ziegelmann, Flavio A., 2002. "Nonparametric Estimation Of Volatility Functions: The Local Exponential Estimator," Econometric Theory, Cambridge University Press, vol. 18(04), pages 985-991, August.
  23. Ke-Li Xu & Peter C.B. Phillips, 2006. "Adaptive Estimation of Autoregressive Models with Time-Varying Variances," Cowles Foundation Discussion Papers 1585, Cowles Foundation for Research in Economics, Yale University.
  24. Davidson, James, 1994. "Stochastic Limit Theory: An Introduction for Econometricians," OUP Catalogue, Oxford University Press, number 9780198774037, March.
  25. Martins-Filho, Carlos & Yao, Feng, 2007. "Nonparametric frontier estimation via local linear regression," Journal of Econometrics, Elsevier, vol. 141(1), pages 283-319, November.
  26. Michael Johannes, 2004. "The Statistical and Economic Role of Jumps in Continuous-Time Interest Rate Models," Journal of Finance, American Finance Association, vol. 59(1), pages 227-260, 02.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1612. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Glena Ames)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.