IDEAS home Printed from
MyIDEAS: Log in (now much improved!) to save this paper

Local Nonparametric Estimation of Scalar Diffusions

Listed author(s):
  • Moloche, Guillermo

This paper studies the functional estimation of the drift and diffusion functions for recurrent scalar diffusion processes from equally spaced observations using the local polynomial kernel approach. Almost sure convergence and a CLT for the estimators are established as the sampling frequency and the time span go to infinity. The asymptotic distributions follow a mixture of normal laws. This theory covers both positive and null recurrent diffusions. Almost sure convergence rates are sometimes path dependent but expected rates can always be characterized in terms of regularly varying functions. The general theory is specialized for positive recurrent diffusion processes, and it is shown in this case that the asymptotic distributions are normal. We also obtain the limit theory for kernel density estimators when the process is positive recurrent, namely, requiring only that the invariant probability measure exists. Nonetheless, it is also shown that such an estimator paradoxically vanishes almost surely when the invariant measure is fat tailed and nonintegrable, that is, in the null recurrent case.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL:
File Function: original version
Download Restriction: no

Paper provided by University Library of Munich, Germany in its series MPRA Paper with number 46154.

in new window

Date of creation: 23 Sep 2001
Handle: RePEc:pra:mprapa:46154
Contact details of provider: Postal:
Ludwigstra├če 33, D-80539 Munich, Germany

Phone: +49-(0)89-2180-2459
Fax: +49-(0)89-2180-992459
Web page:

More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

in new window

  1. Yakowitz, Sidney, 1989. "Nonparametric density and regression estimation for Markov sequences without mixing assumptions," Journal of Multivariate Analysis, Elsevier, vol. 30(1), pages 124-136, July.
  2. Zirbel, Craig L., 1997. "Mean occupation times of continuous one-dimensional Markov processes," Stochastic Processes and their Applications, Elsevier, vol. 69(2), pages 161-178, September.
  3. Bandi, Federico & Moloche, Guillermo, 2008. "On the functional estimation of multivariate diffusion processes," MPRA Paper 43681, University Library of Munich, Germany.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:46154. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Joachim Winter)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.