IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

An ADF Coefficient Test for a Unit Root in ARMA Models of Unknown Order with Empirical Applications to the U.S. Economy

This paper proposes an ADF coefficient test for detecting the presence of a unit root in ARMA models of unknown order. Our approach is fully parametric. When the time series has an unknown deterministic trend, we propose a modified version of the ADF coefficient test based on quasi-differencing in the construction of the detrending regression as in Elliot, Rothenberg and Stock (1996). The limit distributions of these test statistics are derived. Empirical applications of these tests for common macroeconomic time series in the US economy are reported and compared with the usual ADF t-test.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://cowles.econ.yale.edu/P/cd/d11b/d1161.pdf
Download Restriction: no

Paper provided by Cowles Foundation for Research in Economics, Yale University in its series Cowles Foundation Discussion Papers with number 1161.

as
in new window

Length: 18 pages
Date of creation: Sep 1997
Date of revision:
Publication status: Published in Econometrics Journal (1988), 1(2): 27-43
Handle: RePEc:cwl:cwldpp:1161
Note: CFP 1105.
Contact details of provider: Postal: Yale University, Box 208281, New Haven, CT 06520-8281 USA
Phone: (203) 432-3702
Fax: (203) 432-6167
Web page: http://cowles.econ.yale.edu/

More information through EDIRC

Order Information: Postal: Cowles Foundation, Yale University, Box 208281, New Haven, CT 06520-8281 USA

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. DeJong, David N & Whiteman, Charles H, 1991. "The Temporal Stability of Dividends and Stock Prices: Evidence from the Likelihood Function," American Economic Review, American Economic Association, vol. 81(3), pages 600-617, June.
  2. DeJong, David N. & Nankervis, John C. & Savin, N. E. & Whiteman, Charles H., 1992. "The power problems of unit root test in time series with autoregressive errors," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 323-343.
  3. Eugene Canjels & Mark W. Watson, 1994. "Estimating Deterministic Trends in the Presence of Serially Correlated Errors," NBER Technical Working Papers 0165, National Bureau of Economic Research, Inc.
  4. Perron, P., 1986. "Trends and Random Walks in Macroeconomic Time Series: Further Evidence From a New Approach," Cahiers de recherche 8650, Universite de Montreal, Departement de sciences economiques.
  5. Peter C.B. Phillips & Pierre Perron, 1986. "Testing for a Unit Root in Time Series Regression," Cowles Foundation Discussion Papers 795R, Cowles Foundation for Research in Economics, Yale University, revised Sep 1987.
  6. Peter C. Schotman & Herman K. van Dijk, 1991. "On Bayesian routes to unit roots," Discussion Paper / Institute for Empirical Macroeconomics 43, Federal Reserve Bank of Minneapolis.
  7. Peter C.B. Phillips & Chin Chin Lee, 1996. "Efficiency Gains from Quasi-Differencing Under Nonstationarity," Cowles Foundation Discussion Papers 1134, Cowles Foundation for Research in Economics, Yale University.
  8. G. William Schwert, 1988. "Tests For Unit Roots: A Monte Carlo Investigation," NBER Technical Working Papers 0073, National Bureau of Economic Research, Inc.
  9. DeJong, David N, et al, 1992. "Integration versus Trend Stationarity in Time Series," Econometrica, Econometric Society, vol. 60(2), pages 423-33, March.
  10. Peter C.B. Phillips, 1995. "Unit Root Tests," Cowles Foundation Discussion Papers 1104, Cowles Foundation for Research in Economics, Yale University.
  11. Hall, Robert E, 1978. "Stochastic Implications of the Life Cycle-Permanent Income Hypothesis: Theory and Evidence," Journal of Political Economy, University of Chicago Press, vol. 86(6), pages 971-87, December.
  12. Elliott, Graham & Rothenberg, Thomas J & Stock, James H, 1996. "Efficient Tests for an Autoregressive Unit Root," Econometrica, Econometric Society, vol. 64(4), pages 813-36, July.
  13. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cwl:cwldpp:1161. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Glena Ames)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.