IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this article or follow this journal

An ADF coefficient test for a unit root in ARMA models of unknown order with empirical applications to the US economy

  • ZHIJE XIAO
  • PETER C.B. PHILLIPS

This paper proposes an Augmented Dickey-Fuller (ADF) coefficient test for detecting the presence of a unit root in autoregressive moving average (ARMA) models of unknown order. Although the limit distribution of the coefficient estimate depends on nui-sance parameters, a simple transformation can be applied to eliminate the nuisance parameter asymptotically, providing an ADF coefficient test for this case. When the time series has an unknown deterministic trend, we propose a modified version of the ADF coefficient test based on quasi-differencing in the construction of the detrending regression as in Elliott et al. (1996). The limit distributions of these test statistics are derived. Empirical applications of these tests for common macroeconomic time series in the US economy are reported and compared with the usual ADF t -test.

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Article provided by Royal Economic Society in its journal The Econometrics Journal.

Volume (Year): 1 (1998)
Issue (Month): RegularPapers ()
Pages: 27-43

as
in new window

Handle: RePEc:ect:emjrnl:v:1:y:1998:i:regularpapers:p:27-43
Contact details of provider: Postal: Office of the Secretary-General, School of Economics and Finance, University of St. Andrews, St. Andrews, Fife, KY16 9AL, UK
Phone: +44 1334 462479
Web page: http://www.res.org.uk/
Email:


More information through EDIRC

Order Information: Web: http://www.ectj.org

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Phillips, P.C.B., 1986. "Testing for a Unit Root in Time Series Regression," Cahiers de recherche 8633, Universite de Montreal, Departement de sciences economiques.
  2. Schotman, Peter C & van Dijk, Herman K, 1991. "On Bayesian Routes to Unit Roots," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 6(4), pages 387-401, Oct.-Dec..
  3. DeJong, David N & Whiteman, Charles H, 1991. "The Temporal Stability of Dividends and Stock Prices: Evidence from the Likelihood Function," American Economic Review, American Economic Association, vol. 81(3), pages 600-617, June.
  4. Schwert, G William, 1989. "Tests for Unit Roots: A Monte Carlo Investigation," Journal of Business & Economic Statistics, American Statistical Association, vol. 7(2), pages 147-59, April.
  5. Hall, Robert E, 1978. "Stochastic Implications of the Life Cycle-Permanent Income Hypothesis: Theory and Evidence," Journal of Political Economy, University of Chicago Press, vol. 86(6), pages 971-87, December.
  6. Graham Elliott & Thomas J. Rothenberg & James H. Stock, 1992. "Efficient Tests for an Autoregressive Unit Root," NBER Technical Working Papers 0130, National Bureau of Economic Research, Inc.
  7. Perron, Pierre, 1988. "Trends and random walks in macroeconomic time series : Further evidence from a new approach," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 297-332.
  8. DeJong, David N. & Nankervis, John C. & Savin, N. E. & Whiteman, Charles H., 1992. "The power problems of unit root test in time series with autoregressive errors," Journal of Econometrics, Elsevier, vol. 53(1-3), pages 323-343.
  9. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
  10. Peter C.B. Phillips, 1995. "Unit Root Tests," Cowles Foundation Discussion Papers 1104, Cowles Foundation for Research in Economics, Yale University.
  11. Eugene Canjels & Mark W. Watson, 1994. "Estimating Deterministic Trends in the Presence of Serially Correlated Errors," NBER Technical Working Papers 0165, National Bureau of Economic Research, Inc.
  12. DeJong, David N, et al, 1992. "Integration versus Trend Stationarity in Time Series," Econometrica, Econometric Society, vol. 60(2), pages 423-33, March.
  13. Peter C.B. Phillips & Chin Chin Lee, 1996. "Efficiency Gains from Quasi-Differencing Under Nonstationarity," Cowles Foundation Discussion Papers 1134, Cowles Foundation for Research in Economics, Yale University.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:ect:emjrnl:v:1:y:1998:i:regularpapers:p:27-43. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing)

or (Christopher F. Baum)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.