IDEAS home Printed from https://ideas.repec.org/p/cty/dpaper/08-09.html
   My bibliography  Save this paper

Early Detection Techniques for Market Risk Failure

Author

Listed:
  • Olmo, J.
  • Pouliot, W.

Abstract

The implementation of appropriate statistical techniques for monitoring conditional VaR models, i.e, backtesting, reported by institutions is fundamental to determine their exposure to market risk. Backtesting techniques are important since the severity of the departures of the VaR model from market results determine the penalties imposed for inadequate VaR models. In this paper we make six contributions to backtesting techniques. In particular, we show that the Kupiec test can be viewed as a combination of CUSUM change point tests; we detail the lack of power of CUSUM methods in detecting violations of VaR as soon as these occur; we develop an alternative technique based on weighted U-statistic type processes that have power against wrong specifications of the risk measure and early detection; we show these new backtesting techniques are robust to the presence of estimation risk; we construct a new class of weight functions that can be used to weight our processes; and our methods are applicable both under conditional and unconditional VaR settings.

Suggested Citation

  • Olmo, J. & Pouliot, W., 2008. "Early Detection Techniques for Market Risk Failure," Working Papers 08/09, Department of Economics, City University London.
  • Handle: RePEc:cty:dpaper:08/09
    as

    Download full text from publisher

    File URL: http://openaccess.city.ac.uk/1501/1/0809_olmo-pouliot.pdf
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    as
    1. Filippo Altissimo & Valentina Corradi, 2000. "Strong Rules for Detecting the Number of Breaks in a Time Series," Econometric Society World Congress 2000 Contributed Papers 0574, Econometric Society.
    2. Christoffersen, Peter & Hahn, Jinyong & Inoue, Atsushi, 2001. "Testing and comparing Value-at-Risk measures," Journal of Empirical Finance, Elsevier, vol. 8(3), pages 325-342, July.
    3. Koenker, Roger & Xiao, Zhijie, 2006. "Quantile Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 980-990, September.
    4. Andreou, Elena & Ghysels, Eric, 2006. "Monitoring disruptions in financial markets," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 77-124.
    5. Hansen, Bruce E., 2000. "Testing for structural change in conditional models," Journal of Econometrics, Elsevier, vol. 97(1), pages 93-115, July.
    6. Keith Kuester & Stefan Mittnik & Marc S. Paolella, 2006. "Value-at-Risk Prediction: A Comparison of Alternative Strategies," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 4(1), pages 53-89.
    7. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    8. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    9. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    10. Mc Cracken, Michael W., 2000. "Robust out-of-sample inference," Journal of Econometrics, Elsevier, vol. 99(2), pages 195-223, December.
    11. Gombay Edit & Horváth Lajos & Husková Marie, 1996. "Estimators And Tests For Change In Variances," Statistics & Risk Modeling, De Gruyter, vol. 14(2), pages 145-160, February.
    12. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    13. Leisch, Friedrich & Hornik, Kurt & Kuan, Chung-Ming, 2000. "Monitoring Structural Changes With The Generalized Fluctuation Test," Econometric Theory, Cambridge University Press, vol. 16(06), pages 835-854, December.
    14. Altissimo, Filippo & Corradi, Valentina, 2003. "Strong rules for detecting the number of breaks in a time series," Journal of Econometrics, Elsevier, vol. 117(2), pages 207-244, December.
    15. McCabe, B.P.M., 1988. "A Multiple Decision Theory Analysis of Structural Stability in Regression," Econometric Theory, Cambridge University Press, vol. 4(03), pages 499-508, December.
    16. Csörgo, Miklós & Horváth, Lajos, 1988. "Invariance principles for changepoint problems," Journal of Multivariate Analysis, Elsevier, vol. 27(1), pages 151-168, October.
    17. J. Carlos Escanciano & Jose Olmo, 2011. "Robust Backtesting Tests for Value-at-risk Models," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 9(1), pages 132-161, Winter.
    18. Ploberger, Werner & Kramer, Walter & Kontrus, Karl, 1989. "A new test for structural stability in the linear regression model," Journal of Econometrics, Elsevier, vol. 40(2), pages 307-318, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pouliot, William, 2016. "Robust tests for change in intercept and slope in linear regression models with application to manager performance in the mutual fund industry," Economic Modelling, Elsevier, vol. 58(C), pages 523-534.
    2. Pouliot, W. & Olmo, J., 2008. "U-statistic Type Tests for Structural Breaks in Linear Regression Models," Working Papers 08/15, Department of Economics, City University London.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cty:dpaper:08/09. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Research Publications Librarian). General contact details of provider: http://edirc.repec.org/data/decituk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.