IDEAS home Printed from
   My bibliography  Save this paper

Multiple Change-Point Detection in Linear Regression Models via U-Statistic Type Processes


  • Burcu Kapar
  • William Pouliot


Many procedures have been developed that are suited to testing for multiple changes in parameters of regression models which occur at unknown times. Most notably, Brown, Durbin and Evans [11] and Dufour [15], have developed or extended existing techniques, but said extensions lack power for detecting changes (cf. Kramer, Ploberger, Alt [24] and Pouliot [32] in the intercept parameter of linear regression models. Orasch [26] has developed a stochastic process that easily accommodates testing for many change-points that occur at unknown times. A slight modification of his process is suggested here which improves the power of statistics fashioned from it. These statistics are then used to construct tests to detect multiple changes in intercept in linear regression models. It is also shown here that this slightly altered process, when weighted by appropriately chosen functions, is sensitive to detection of multiple changes in intercept that occur both early and later on in the sample, while maintaining sensitivity to changes that occur in the middle of the sample.

Suggested Citation

  • Burcu Kapar & William Pouliot, 2013. "Multiple Change-Point Detection in Linear Regression Models via U-Statistic Type Processes," Discussion Papers 13-13, Department of Economics, University of Birmingham.
  • Handle: RePEc:bir:birmec:13-13

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Ploberger, Werner & Krämer;, Walter, 1990. "The Local Power of the CUSUM and CUSUM of Squares Tests," Econometric Theory, Cambridge University Press, vol. 6(03), pages 335-347, September.
    2. Filippo Altissimo & Valentina Corradi, 2000. "Strong Rules for Detecting the Number of Breaks in a Time Series," Econometric Society World Congress 2000 Contributed Papers 0574, Econometric Society.
    3. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    4. Hansen, Bruce E., 2000. "Testing for structural change in conditional models," Journal of Econometrics, Elsevier, vol. 97(1), pages 93-115, July.
    5. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    6. Kramer, Walter & Ploberger, Werner & Alt, Raimund, 1988. "Testing for Structural Change in Dynamic Models," Econometrica, Econometric Society, vol. 56(6), pages 1355-1369, November.
    7. Andrews, Donald W. K. & Lee, Inpyo & Ploberger, Werner, 1996. "Optimal changepoint tests for normal linear regression," Journal of Econometrics, Elsevier, vol. 70(1), pages 9-38, January.
    8. Donald W. K. Andrews, 2003. "Tests for Parameter Instability and Structural Change with Unknown Change Point: A Corrigendum," Econometrica, Econometric Society, vol. 71(1), pages 395-397, January.
    9. Hansen, Bruce E., 1992. "Testing for parameter instability in linear models," Journal of Policy Modeling, Elsevier, vol. 14(4), pages 517-533, August.
    10. Altissimo, Filippo & Corradi, Valentina, 2003. "Strong rules for detecting the number of breaks in a time series," Journal of Econometrics, Elsevier, vol. 117(2), pages 207-244, December.
    11. Ploberger, Werner & Kramer, Walter & Kontrus, Karl, 1989. "A new test for structural stability in the linear regression model," Journal of Econometrics, Elsevier, vol. 40(2), pages 307-318, February.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Jose Olmo & William Pouliot, 2014. "Tests to Disentangle Breaks in Intercept from Slope in Linear Regression Models with Application to Management Performance in the Mutual Fund Industry," Discussion Papers 14-02, Department of Economics, University of Birmingham.

    More about this item


    Structural Breaks; U-Statistics; Brownian Bridge; Linear Regression Model;

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bir:birmec:13-13. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Colin Rowat). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.