IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

The Castle on the Hill

  • David K Levine

A simple example of a stochastic games with irreversibility is studied and it is shown that the folk theorem fails in a robust way. In this game of Castle on the Hill, for a broad range of discount factors, including those close to me, equilibrium is unique. Moreover, the equilibrium for large discount factors is Pareto dominated by the equilibrium for low discount factors. A unique cyclic equilibrium is also possible for intermediate ranges of discount factors. (Copyright: Elsevier)

(This abstract was borrowed from another version of this item.)

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.dklevine.com/papers/castle.pdf
Download Restriction: no

Paper provided by David K. Levine in its series Levine's Working Paper Archive with number 2068.

as
in new window

Length:
Date of creation: 04 Jan 2000
Date of revision:
Handle: RePEc:cla:levarc:2068
Contact details of provider: Web page: http://www.dklevine.com/

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Abreu, Dilip & Dutta, Prajit K & Smith, Lones, 1994. "The Folk Theorem for Repeated Games: A NEU Condition," Econometrica, Econometric Society, vol. 62(4), pages 939-48, July.
  2. Dilip Abreu & Prajit K Dutta & Lones Smith, 1997. "Folk Theorems for Repeated Games: A NEU Condition," Levine's Working Paper Archive 633, David K. Levine.
  3. Fudenberg, Drew & Levine, David I & Maskin, Eric, 1994. "The Folk Theorem with Imperfect Public Information," Econometrica, Econometric Society, vol. 62(5), pages 997-1039, September.
  4. Binmore, K & Shaked, A & Sutton, J, 1985. "Testing Noncooperative Bargaining Theory: A Preliminary Study," American Economic Review, American Economic Association, vol. 75(5), pages 1178-80, December.
  5. Ariel Rubinstein, 2010. "Perfect Equilibrium in a Bargaining Model," Levine's Working Paper Archive 252, David K. Levine.
  6. Dutta Prajit K., 1995. "A Folk Theorem for Stochastic Games," Journal of Economic Theory, Elsevier, vol. 66(1), pages 1-32, June.
  7. Dutta, P.K., 1991. "A Folk Theorem for Stochastic Games," RCER Working Papers 293, University of Rochester - Center for Economic Research (RCER).
  8. E. Maskin & D. Fudenberg, 1984. "The Folk Theorem and Repeated Games with Discount and with Incomplete Information," Working papers 310, Massachusetts Institute of Technology (MIT), Department of Economics.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cla:levarc:2068. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (David K. Levine)

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.