IDEAS home Printed from https://ideas.repec.org/
MyIDEAS: Login to save this paper or follow this series

Tit-For-Tat Equilibria in Discounted Repeated Games with Private Monitoring

  • Hitoshi Matsushima

    (Faculty of Economics, University of Tokyo)

We investigate infinitely repeated games with imperfect private monitoring. We focus on a class of games where the payoff functions are additively separable and the signal for monitoring a player's action does not depend on the other player's action. Tit-for-tat strategies function very well in this class, according to which each player's action in each period depends only on the signal for the opponent's action one period before. With almost perfect monitoring, we show that even if the discount factors are fixed low, efficiency is approximated by a tit-for-tat Nash equilibrium payoff vector.

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.

File URL: http://www.carf.e.u-tokyo.ac.jp/pdf/workingpaper/fseries/97.pdf
Download Restriction: no

Paper provided by Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo in its series CARF F-Series with number CARF-F-096.

as
in new window

Length: 19 pages
Date of creation: Apr 2007
Date of revision:
Handle: RePEc:cfi:fseres:cf096
Contact details of provider: Postal: Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033
Phone: +81-3-5841-0682
Web page: http://www.carf.e.u-tokyo.ac.jp/english/
Email:


More information through EDIRC

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:

as in new window
  1. Fudenberg, Drew & Levine, David I & Maskin, Eric, 1994. "The Folk Theorem with Imperfect Public Information," Econometrica, Econometric Society, vol. 62(5), pages 997-1039, September.
  2. Sekiguchi, Tadashi, 1997. "Efficiency in Repeated Prisoner's Dilemma with Private Monitoring," Journal of Economic Theory, Elsevier, vol. 76(2), pages 345-361, October.
  3. Jeffrey Ely, 2000. "A Robust Folk Theorem for the Prisoners' Dilemma," Econometric Society World Congress 2000 Contributed Papers 0210, Econometric Society.
  4. Martin J. Osborne & Ariel Rubinstein, 1994. "A Course in Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262650401, June.
  5. Drew Fudenberg & Jean Tirole, 1991. "Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262061414, June.
Full references (including those not matched with items on IDEAS)

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

When requesting a correction, please mention this item's handle: RePEc:cfi:fseres:cf096. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ()

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.

This information is provided to you by IDEAS at the Research Division of the Federal Reserve Bank of St. Louis using RePEc data.