IDEAS home Printed from https://ideas.repec.org/p/ces/ceswps/_6651.html
   My bibliography  Save this paper

Assessing the Effects of Climate Policy on Companies' Greenhouse Gas Emissions

Author

Listed:
  • Ana Maria Montoya Gómez
  • Markus Zimmer

Abstract

We study the effect of climate policy on companies’ greenhouse gas emissions using emissions data for the headquarters and subsidiaries of the world’s biggest manufacturing, energy, and utility companies. Our results suggest that financial incentives and legal requirements to audit energy use reduce companies’ emissions, whereas support schemes aimed at promoting the combined generation of heat and power increased emissions of non-utility companies and feed-in tariffs aimed at increasing the use of renewable energy sources for electricity generation increase emissions of utility companies. We also find loans and subsidies for energy efficiency improvements to increase emissions in the short term. In addition, our results provide a solid foundation for researchers seeking consistent and comparable estimates on the mitigation effects of typical climate policy instruments in a cross-country setting.

Suggested Citation

  • Ana Maria Montoya Gómez & Markus Zimmer, 2017. "Assessing the Effects of Climate Policy on Companies' Greenhouse Gas Emissions," CESifo Working Paper Series 6651, CESifo.
  • Handle: RePEc:ces:ceswps:_6651
    as

    Download full text from publisher

    File URL: https://www.cesifo.org/DocDL/cesifo1_wp6651.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Allen Blackman, 2010. "Alternative Pollution Control Policies in Developing Countries," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 4(2), pages 234-253, Summer.
    2. Brannlund, Runar & Ghalwash, Tarek & Nordstrom, Jonas, 2007. "Increased energy efficiency and the rebound effect: Effects on consumption and emissions," Energy Economics, Elsevier, vol. 29(1), pages 1-17, January.
    3. José Féres & Arnaud Reynaud, 2012. "Assessing the Impact of Formal and Informal Regulations on Environmental and Economic Performance of Brazilian Manufacturing Firms," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 52(1), pages 65-85, May.
    4. Heckman, James, 2013. "Sample selection bias as a specification error," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 31(3), pages 129-137.
    5. Saunders, Harry D., 2000. "A view from the macro side: rebound, backfire, and Khazzoom-Brookes," Energy Policy, Elsevier, vol. 28(6-7), pages 439-449, June.
    6. Sorrell, Steve & Dimitropoulos, John, 2008. "The rebound effect: Microeconomic definitions, limitations and extensions," Ecological Economics, Elsevier, vol. 65(3), pages 636-649, April.
    7. Felder Stefan & Rutherford Thomas F., 1993. "Unilateral CO2 Reductions and Carbon Leakage: The Consequences of International Trade in Oil and Basic Materials," Journal of Environmental Economics and Management, Elsevier, vol. 25(2), pages 162-176, September.
    8. Cole, Matthew A. & Elliott, Robert J.R. & Shimamoto, Kenichi, 2005. "Industrial characteristics, environmental regulations and air pollution: an analysis of the UK manufacturing sector," Journal of Environmental Economics and Management, Elsevier, vol. 50(1), pages 121-143, July.
    9. Jan Abrell & Anta Ndoye Faye & Georg Zachmann, 2011. "Assessing the impact of the EU ETS using firm level data," Working Papers of BETA 2011-15, Bureau d'Economie Théorique et Appliquée, UDS, Strasbourg.
    10. Semykina, Anastasia & Wooldridge, Jeffrey M., 2010. "Estimating panel data models in the presence of endogeneity and selection," Journal of Econometrics, Elsevier, vol. 157(2), pages 375-380, August.
    11. Zhao, Xiaoli & Yin, Haitao & Zhao, Yue, 2015. "Impact of environmental regulations on the efficiency and CO2 emissions of power plants in China," Applied Energy, Elsevier, vol. 149(C), pages 238-247.
    12. Babiker, Mustafa H., 2005. "Climate change policy, market structure, and carbon leakage," Journal of International Economics, Elsevier, vol. 65(2), pages 421-445, March.
    13. Mizobuchi, Kenichi, 2008. "An empirical study on the rebound effect considering capital costs," Energy Economics, Elsevier, vol. 30(5), pages 2486-2516, September.
    14. Ralf Martin & Laure B. de Preux & Ulrich J. Wagner, 2011. "The Impacts of the Climate Change Levy on Manufacturing: Evidence from Microdata," NBER Working Papers 17446, National Bureau of Economic Research, Inc.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Montoya Gómez, Ana Maria & Zimmer, Markus, 2017. "Assessing the Effects of Climate Policy on Firms' Greenhouse Gas Emissions," VfS Annual Conference 2017 (Vienna): Alternative Structures for Money and Banking 168273, Verein für Socialpolitik / German Economic Association.
    2. Orea, Luis & Llorca, Manuel & Filippini, Massimo, 2015. "A new approach to measuring the rebound effect associated to energy efficiency improvements: An application to the US residential energy demand," Energy Economics, Elsevier, vol. 49(C), pages 599-609.
    3. Thomas, Brinda A. & Azevedo, Inês L., 2013. "Estimating direct and indirect rebound effects for U.S. households with input–output analysis Part 1: Theoretical framework," Ecological Economics, Elsevier, vol. 86(C), pages 199-210.
    4. Milin Lu & Zhaohua Wang, 2017. "Rebound effects for residential electricity use in urban China: an aggregation analysis based E-I-O and scenario simulation," Annals of Operations Research, Springer, vol. 255(1), pages 525-546, August.
    5. Zhang, Yue-Jun & Liu, Zhao & Qin, Chang-Xiong & Tan, Tai-De, 2017. "The direct and indirect CO2 rebound effect for private cars in China," Energy Policy, Elsevier, vol. 100(C), pages 149-161.
    6. Lin, Boqiang & Yang, Fang & Liu, Xia, 2013. "A study of the rebound effect on China's current energy conservation and emissions reduction: Measures and policy choices," Energy, Elsevier, vol. 58(C), pages 330-339.
    7. Orea, Luis & Llorca, Manuel & Filippini, Massimo, 2014. "Measuring energy efficiency and rebound effects using a stochastic demand frontier approach: the US residential energy demand," Efficiency Series Papers 2014/01, University of Oviedo, Department of Economics, Oviedo Efficiency Group (OEG).
    8. Murray, Cameron K, 2011. "Income dependent direct and indirect rebound effects from ’green’ consumption choices in Australia," MPRA Paper 34973, University Library of Munich, Germany.
    9. Karen Turner, 2013. ""Rebound" Effects from Increased Energy Efficiency: A Time to Pause and Reflect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    10. Qian Chen & Jaume Freire González & Donglan Zha, 2023. "The Gap between Expectations and Reality: Assessing the Water Rebound Effect in Chinese Agriculture," Working Papers 1415, Barcelona School of Economics.
    11. Katrin Millock & Céline Nauges, 2010. "Household Adoption of Water-Efficient Equipment: The Role of Socio-Economic Factors, Environmental Attitudes and Policy," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 46(4), pages 539-565, August.
    12. Ditya Agung Nurdianto, 2016. "Economic Impacts of a Carbon Tax in an Integrated ASEAN," EEPSEA Special and Technical Paper tp201604t5, Economy and Environment Program for Southeast Asia (EEPSEA), revised Apr 2016.
    13. Yang, Lisha & Li, Zhi, 2017. "Technology advance and the carbon dioxide emission in China – Empirical research based on the rebound effect," Energy Policy, Elsevier, vol. 101(C), pages 150-161.
    14. Sekitou, Mai & Tanaka, Kenta & Managi, Shunsuke, 2018. "Household electricity demand after the introduction of solar photovoltaic systems," Economic Analysis and Policy, Elsevier, vol. 57(C), pages 102-110.
    15. Figge, Frank & Thorpe, Andrea Stevenson, 2019. "The symbiotic rebound effect in the circular economy," Ecological Economics, Elsevier, vol. 163(C), pages 61-69.
    16. Hendrik Schmitz and Reinhard Madlener, 2020. "Direct and Indirect Energy Rebound Effects in German Households: A Linearized Almost Ideal Demand System Approach," The Energy Journal, International Association for Energy Economics, vol. 0(Number 5), pages 89-118.
    17. Li, Jianglong & Li, Aijun & Xie, Xuan, 2018. "Rebound effect of transportation considering additional capital costs and input-output relationships: The role of subsistence consumption and unmet demand," Energy Economics, Elsevier, vol. 74(C), pages 441-455.
    18. Fullerton, Don & Ta, Chi L., 2020. "Costs of energy efficiency mandates can reverse the sign of rebound," Journal of Public Economics, Elsevier, vol. 188(C).
    19. Rongxin Wu & Boqiang Lin, 2022. "Does Energy Efficiency Realize Energy Conservation in the Iron and Steel Industry? A Perspective of Energy Rebound Effect," IJERPH, MDPI, vol. 19(18), pages 1-20, September.
    20. Ditya A Nurdianto & Budy P Resosudarmo, 2014. "ASEAN Economic community and climate change," Departmental Working Papers 2014-24, The Australian National University, Arndt-Corden Department of Economics.

    More about this item

    Keywords

    climate policy evaluation; greenhouse gas emissions; cross-country micro panel data; companies; firms;
    All these keywords.

    JEL classification:

    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies
    • H32 - Public Economics - - Fiscal Policies and Behavior of Economic Agents - - - Firm
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ces:ceswps:_6651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Klaus Wohlrabe (email available below). General contact details of provider: https://edirc.repec.org/data/cesifde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.