IDEAS home Printed from https://ideas.repec.org/p/cee/wpcepe/05-44.html
   My bibliography  Save this paper

Economies of Scale in the Swiss Hydropower Sector

Author

Listed:
  • Massimo Filippini

    (Center for Energy Policy and Economics CEPE, Department of Management, Technology and Economics, ETH Zurich, Switzerland)

  • Cornelia Luchsinger

    (Center for Energy Policy and Economics CEPE, Department of Management, Technology and Economics, ETH Zurich, Switzerland)

Abstract

The paper considers the estimation of a translog cost function employing panel data for a sample of 43 Swiss hydropower companies, over the period of 1995-2002. The results of this analysis indicate the existence of economies of scale and density for most output levels. The basic novelty in this paper is the estimation of a cost function for a sample of hydropower companies. In the economic literature no study on the cost structure of the hydropower plants using an econometric approach has been published so far.

Suggested Citation

  • Massimo Filippini & Cornelia Luchsinger, 2005. "Economies of Scale in the Swiss Hydropower Sector," CEPE Working paper series 05-44, CEPE Center for Energy Policy and Economics, ETH Zurich.
  • Handle: RePEc:cee:wpcepe:05-44
    as

    Download full text from publisher

    File URL: http://www.cepe.ethz.ch/publications/workingPapers/CEPE_WP44.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ramos-Real, Francisco Javier, 2005. "Cost functions and the electric utility industry. A contribution to the debate on deregulation," Energy Policy, Elsevier, vol. 33(1), pages 69-87, January.
    2. Mehdi Farsi & Massimo Filippini, 2004. "Regulation and Measuring Cost-Efficiency with Panel Data Models: Application to Electricity Distribution Utilities," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 25(1), pages 1-19, August.
    3. L. Dean Hiebert, 2002. "The Determinants of the Cost Efficiency of Electric Generating Plants: A Stochastic Frontier Approach," Southern Economic Journal, John Wiley & Sons, vol. 68(4), pages 935-946, April.
    4. Chambers,Robert G., 1988. "Applied Production Analysis," Cambridge Books, Cambridge University Press, number 9780521314275, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Reinhard Madlener & Stefan Vögtli, 2006. "Diffusion of bioenergy in urban areas: socio-economic analysis of the planned Swiss wood-fired cogeneration plant in Basel," CEPE Working paper series 06-53, CEPE Center for Energy Policy and Economics, ETH Zurich.
    2. Madlener, Reinhard & Koller, Martin, 2007. "Economic and CO2 mitigation impacts of promoting biomass heating systems: An input-output study for Vorarlberg, Austria," Energy Policy, Elsevier, vol. 35(12), pages 6021-6035, December.
    3. Banfi, Silvia & Filippini, Massimo, 2010. "Resource rent taxation and benchmarking--A new perspective for the Swiss hydropower sector," Energy Policy, Elsevier, vol. 38(5), pages 2302-2308, May.
    4. Oladosu, Gbadebo A. & Werble, Joseph & Tingen, William & Witt, Adam & Mobley, Miles & O'Connor, Patrick, 2021. "Costs of mitigating the environmental impacts of hydropower projects in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    5. Massimo Filippini & Thomas Geissmann & William H. Greene, 2018. "Persistent and transient cost efficiency—an application to the Swiss hydropower sector," Journal of Productivity Analysis, Springer, vol. 49(1), pages 65-77, February.
    6. Byoung-Kuk Ju & Seung-Hoon Yoo & Chulwoo Baek, 2022. "Economies of Scale in City Gas Sector in Seoul, South Korea: Evidence from an Empirical Investigation," Sustainability, MDPI, vol. 14(9), pages 1-14, April.
    7. Silvia Banfi & Massimo Filippini & Andrea Horehájová, 2012. "Using a choice experiment to estimate the benefits of a reduction of externalities in urban areas with special focus on electrosmog," Applied Economics, Taylor & Francis Journals, vol. 44(3), pages 387-397, January.
    8. Silvia Banfi & Massimo Filippini & Andrea Horehájová, 2007. "Hedonic Price Functions for Zurich and Lugano with Special Focus on Electrosmog," CEPE Working paper series 07-57, CEPE Center for Energy Policy and Economics, ETH Zurich.
    9. See, Kok Fong & Coelli, Tim, 2014. "Total factor productivity analysis of a single vertically integrated electricity utility in Malaysia using a Törnqvist index method," Utilities Policy, Elsevier, vol. 28(C), pages 62-72.
    10. Bottasso, Anna & Conti, Maurizio, 2009. "Scale economies, technology and technical change in the water industry: Evidence from the English water only sector," Regional Science and Urban Economics, Elsevier, vol. 39(2), pages 138-147, March.
    11. Reinhard Madlener & Carlos Henggeler Antunes & Luis C. Dias, 2006. "Multi-Criteria versus Data Envelopment Analysis for Assessing the Performance of Biogas Plants," CEPE Working paper series 06-49, CEPE Center for Energy Policy and Economics, ETH Zurich.
    12. Kok Fong See & Tim Coelli, 2009. "The Effects of Competition Policy on TFP Growth: Some Evidence from the Malaysian Electricity Supply Industry," CEPA Working Papers Series WP062009, School of Economics, University of Queensland, Australia.
    13. Machado, Mauricio Marins & de Sousa, Maria Conceição Sampaio & Hewings, Geoffrey, 2016. "Economies of scale and technological progress in electric power production: The case of Brazilian utilities," Energy Economics, Elsevier, vol. 59(C), pages 290-299.
    14. Arias-Gaviria, Jessica & van der Zwaan, Bob & Kober, Tom & Arango-Aramburo, Santiago, 2017. "The prospects for Small Hydropower in Colombia," Renewable Energy, Elsevier, vol. 107(C), pages 204-214.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barros, Carlos Pestana, 2008. "Efficiency analysis of hydroelectric generating plants: A case study for Portugal," Energy Economics, Elsevier, vol. 30(1), pages 59-75, January.
    2. Margarita Genius & Spiro Stefanou & Vangelis Tzouvelekas, 2009. "Productivity Growth and Efficiency under Leontief Technology: An Application to US Steam-Electric Power Generation Utilities," Working Papers 0913, University of Crete, Department of Economics.
    3. Mehdi Farsi & Aurelio Fetz & Massimo Filippini, 2007. "Benchmarking and Regulation in the Electricity Distribution Sector," CEPE Working paper series 07-54, CEPE Center for Energy Policy and Economics, ETH Zurich.
    4. Mehdi Farsi & Massimo Filippini & William Greene, 2006. "Application Of Panel Data Models In Benchmarking Analysis Of The Electricity Distribution Sector," Annals of Public and Cooperative Economics, Wiley Blackwell, vol. 77(3), pages 271-290, September.
    5. Filippini, Massimo & Wetzel, Heike, 2014. "The impact of ownership unbundling on cost efficiency: Empirical evidence from the New Zealand electricity distribution sector," Energy Economics, Elsevier, vol. 45(C), pages 412-418.
    6. Goto, Mika & Sueyoshi, Toshiyuki, 2009. "Productivity growth and deregulation of Japanese electricity distribution," Energy Policy, Elsevier, vol. 37(8), pages 3130-3138, August.
    7. Farsi, Mehdi & Filippini, Massimo & Kuenzle, Michael, 2007. "Cost efficiency in the Swiss gas distribution sector," Energy Economics, Elsevier, vol. 29(1), pages 64-78, January.
    8. Massimo Filippini & Marika Zola, 2005. "Economies of scale and cost efficiency in the postal services: empirical evidence from Switzerland," Applied Economics Letters, Taylor & Francis Journals, vol. 12(7), pages 437-441.
    9. Mehdi Farsi & Massimo Filippini & Michael Kuenzle, 2006. "Cost Efficiency in Regional Bus Companies: An Application of Alternative Stochastic Frontier Models," Journal of Transport Economics and Policy, University of Bath, vol. 40(1), pages 95-118, January.
    10. Gugler, Klaus & Liebensteiner, Mario & Schmitt, Stephan, 2017. "Vertical disintegration in the European electricity sector: Empirical evidence on lost synergies," International Journal of Industrial Organization, Elsevier, vol. 52(C), pages 450-478.
    11. Elvira Silva & Pedro Macedo & Isabel Soares, 2019. "Maximum entropy: a stochastic frontier approach for electricity distribution regulation," Journal of Regulatory Economics, Springer, vol. 55(3), pages 237-257, June.
    12. Barros, Carlos Pestana & Managi, Shunsuke, 2009. "Regulation, pollution and heterogeneity in Japanese steam power generation companies," Energy Policy, Elsevier, vol. 37(8), pages 3109-3114, August.
    13. Assaf, A. George & Barros, Carlos Pestana & Managi, Shunsuke, 2011. "Cost efficiency of Japanese steam power generation companies: A Bayesian comparison of random and fixed frontier models," Applied Energy, Elsevier, vol. 88(4), pages 1441-1446, April.
    14. Shrivastava, Naveen & Sharma, Seema & Chauhan, Kavita, 2012. "Efficiency assessment and benchmarking of thermal power plants in India," Energy Policy, Elsevier, vol. 40(C), pages 159-176.
    15. Barros, Carlos P. & Peypoch, Nicolas, 2007. "The determinants of cost efficiency of hydroelectric generating plants: A random frontier approach," Energy Policy, Elsevier, vol. 35(9), pages 4463-4470, September.
    16. Gilligan, Daniel O., 1998. "Farm Size, Productivity, And Economic Efficiency: Accounting For Differences In Efficiency Of Farms By Size In Honduras," 1998 Annual meeting, August 2-5, Salt Lake City, UT 20918, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    17. Jongeneel, Roelof A. & Ge, Lan, 2005. "Explaining Growth in Dutch Agriculture: Prices, Public R&D, and Technological Change," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24573, European Association of Agricultural Economists.
    18. Paul, Saumik, 2019. "A Decline in Labor's Share with Capital Accumulation and Complementary Factor Inputs: An Application of the Morishima Elasticity of Substitution," IZA Discussion Papers 12219, Institute of Labor Economics (IZA).
    19. Peterson, Jeffrey M. & Boisvert, Richard N. & de Gorter, Harry, 1999. "Multifunctionality and Optimal Environmental Policies for Agriculture in an Open Economy," Working Papers 127701, Cornell University, Department of Applied Economics and Management.
    20. Cai, Yiyong & Newth, David & Finnigan, John & Gunasekera, Don, 2015. "A hybrid energy-economy model for global integrated assessment of climate change, carbon mitigation and energy transformation," Applied Energy, Elsevier, vol. 148(C), pages 381-395.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cee:wpcepe:05-44. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Carlos Ordas (email available below). General contact details of provider: https://edirc.repec.org/data/cepetch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.