IDEAS home Printed from https://ideas.repec.org/p/cdl/ucsdec/qt1qp1g9ts.html

Exogenous Productivity Shocks and Capital Investment in Common-pool Resources

Author

Listed:
  • Fissel, Benjamin E
  • Glibert, Ben

Abstract

We model exogenous technology shocks in common-pool industries using a compound Poisson process for total factor productivity. Rapid di�usion of exogenous innovations is typical in the commons, but technology is rarely modeled this way. Technology shocks lower the equilibrium resource stock while causing capital buildup based on transitory pro�ts with myopic expectations. The steady state changes from a stable node to a shifting focus with boom and bust cycles, even if only technology is uncertain. A �sheries application is developed, but the results apply to many settings with discontinuous changes in value and open access with costly exit.

Suggested Citation

  • Fissel, Benjamin E & Glibert, Ben, 2010. "Exogenous Productivity Shocks and Capital Investment in Common-pool Resources," University of California at San Diego, Economics Working Paper Series qt1qp1g9ts, Department of Economics, UC San Diego.
  • Handle: RePEc:cdl:ucsdec:qt1qp1g9ts
    as

    Download full text from publisher

    File URL: https://www.escholarship.org/uc/item/1qp1g9ts.pdf;origin=repeccitec
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ken Sennewald & Klaus Wälde, 2006. "“Itô's Lemma” and the Bellman Equation for Poisson Processes: An Applied View," Journal of Economics, Springer, vol. 89(1), pages 1-36, October.
    2. Isabelle Huault & V. Perret & S. Charreire-Petit, 2007. "Management," Post-Print halshs-00337676, HAL.
    3. Homans, Frances R. & Wilen, James E., 1997. "A Model of Regulated Open Access Resource Use," Journal of Environmental Economics and Management, Elsevier, vol. 32(1), pages 1-21, January.
    4. Baltagi, Badi H & Griffin, James M, 1988. "A General Index of Technical Change," Journal of Political Economy, University of Chicago Press, vol. 96(1), pages 20-41, February.
    5. Pankaj Tandon, 1983. "Rivalry and the Excessive Allocation of Resources to Research," Bell Journal of Economics, The RAND Corporation, vol. 14(1), pages 152-165, Spring.
    6. Berck, Peter & Perloff, Jeffrey M, 1984. "An Open-Access Fishery with Rational Expectations," Econometrica, Econometric Society, vol. 52(2), pages 489-506, March.
    7. Dasgupta, Partha & Stiglitz, Joseph, 1980. "Industrial Structure and the Nature of Innovative Activity," Economic Journal, Royal Economic Society, vol. 90(358), pages 266-293, June.
    8. Daniel R. Siegel, 1985. "Estimating Potential Social Losses from Market Failure: Oil Exploration in Alberta," RAND Journal of Economics, The RAND Corporation, vol. 16(4), pages 537-552, Winter.
    9. Dale Squires, 1992. "Productivity Measurement in Common Property Resource Industries: An Application to the Pacific Coast Trawl Fishery," RAND Journal of Economics, The RAND Corporation, vol. 23(2), pages 221-236, Summer.
    10. Hannesson, Rognvaldur, 2007. "Growth accounting in a fishery," Journal of Environmental Economics and Management, Elsevier, vol. 53(3), pages 364-376, May.
    11. Kerry Smith, V., 1972. "The implications of common property resources for technical change," European Economic Review, Elsevier, vol. 3(4), pages 469-479, December.
    12. Kenneth Hendricks & Dan Kovenock, 1989. "Asymmetric Information, Information Externalities, and Efficiency: The Case of Oil Exploration," RAND Journal of Economics, The RAND Corporation, vol. 20(2), pages 164-182, Summer.
    13. Clark, Colin W & Clarke, Frank H & Munro, Gordon R, 1979. "The Optimal Exploitation of Renewable Resource Stocks: Problems of Irreversible Investment," Econometrica, Econometric Society, vol. 47(1), pages 25-47, January.
    14. Dale Squires & Niels Vestergaard, 2013. "Technical Change and The Commons," The Review of Economics and Statistics, MIT Press, vol. 95(5), pages 1769-1787, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fissel, Benjamin E. & Gilbert, Ben & LaRiviere, Jacob, 2013. "Technology adoption and diffusion with uncertainty in a commons," Economics Letters, Elsevier, vol. 120(2), pages 297-301.
    2. Ingrid van Putten & Emmanuelle Quillérou & Olivier Guyader, 2012. "How constrained? Entry into the French Atlantic fishery through second-hand vessel purchase," Post-Print hal-00815455, HAL.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sturla Furunes Kvamsdal, 2019. "Indexing of Technical Change in Aggregated Data," Computational Economics, Springer;Society for Computational Economics, vol. 53(3), pages 901-920, March.
    2. Torres, Marcelo de O. & Felthoven, Ronald G., 2014. "Productivity growth and product choice in catch share fisheries: The case of Alaska pollock," Marine Policy, Elsevier, vol. 50(PA), pages 280-289.
    3. Squires, Dale & Vestergaard, Niels, 2015. "Productivity growth, catchability, stock assessments, and optimum renewable resource use," Marine Policy, Elsevier, vol. 62(C), pages 309-317.
    4. Ben White, 2000. "A Review of the Economics of Biological Natural Resources," Journal of Agricultural Economics, Wiley Blackwell, vol. 51(3), pages 419-462, September.
    5. Stephen Kasperski, 2015. "Optimal Multi-species Harvesting in Ecologically and Economically Interdependent Fisheries," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(4), pages 517-557, August.
    6. Håkan Eggert & Ragnar Tveterås, 2013. "Productivity development in Icelandic, Norwegian and Swedish fisheries," Applied Economics, Taylor & Francis Journals, vol. 45(6), pages 709-720, February.
    7. Squires, Dale & Vestergaard, Niels, 2018. "Rethinking the commons problem: Technical change, knowledge spillovers, and social learning," Journal of Environmental Economics and Management, Elsevier, vol. 91(C), pages 1-25.
    8. Walden, John & Fissel, Ben & Squires, Dale & Vestergaard, Niels, 2015. "Productivity change in commercial fisheries: An introduction to the special issue," Marine Policy, Elsevier, vol. 62(C), pages 289-293.
    9. Kvamsdal, Sturla F., 2012. "Technological Change in Renewable Resource Industries: An Alternative Estimation Approach," Discussion Papers 2012/14, Norwegian School of Economics, Department of Business and Management Science.
    10. Da Rocha Alvarez, Jose Maria & Prellezo, Raul & Sempere, Jaume & Taboada-Antelo, Luis, 2016. "Fleet dynamics and overcapitalization under rational expectations," MPRA Paper 79578, University Library of Munich, Germany.
    11. Harhoff, Dietmar, 1991. "R&D incentives and spillovers in a two-industry model," ZEW Discussion Papers 91-06, ZEW - Leibniz Centre for European Economic Research.
    12. Donghyun Oh & Almas Heshmati & Hans Lööf, 2012. "Technical change and total factor productivity growth for Swedish manufacturing and service industries," Applied Economics, Taylor & Francis Journals, vol. 44(18), pages 2373-2391, June.
    13. Bulte, Erwin H., 2003. "Open access harvesting of wildlife: the poaching pit and conservation of endangered species," Agricultural Economics, Blackwell, vol. 28(1), pages 27-37, January.
    14. Berck, Peter & Costello, Christopher, 2000. "Overharvesting the traditional fishery with a captured regulator," CUDARE Working Papers 43915, University of California, Berkeley, Department of Agricultural and Resource Economics.
    15. Ussif, Al-Amin M. & Sumaila, Ussif R., 2005. "Modeling the dynamics of regulated resource systems: a fishery example," Ecological Economics, Elsevier, vol. 52(4), pages 469-479, March.
    16. Oh, Donghyun & Heshmati, Almas & Lööf, Hans, 2014. "Total factor productivity of Korean manufacturing industries: Comparison of competing models with firm-level data," Japan and the World Economy, Elsevier, vol. 30(C), pages 25-36.
    17. Eisenack, K. & Welsch, H. & Kropp, J.P., 2006. "A qualitative dynamical modelling approach to capital accumulation in unregulated fisheries," Journal of Economic Dynamics and Control, Elsevier, vol. 30(12), pages 2613-2636, December.
    18. Ho Geun Jang & Satoshi Yamazaki & Eriko Hoshino, 2019. "Profit and equity trade‐offs in the management of small pelagic fisheries: the case of the Japanese sardine fishery," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(3), pages 549-574, July.
    19. Asche, Frank & Smith, Martin D., 2018. "Viewpoint: Induced Innovation in Fisheries and Aquaculture," Food Policy, Elsevier, vol. 76(C), pages 1-7.
    20. Xie, Fang & Horan, Richard D., 2009. "Disease and Behavioral Dynamics for Brucellosis Control in Elk and Cattle in the Greater Yellowstone Area," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 34(01), pages 1-23.

    More about this item

    Keywords

    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:ucsdec:qt1qp1g9ts. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Lisa Schiff (email available below). General contact details of provider: https://edirc.repec.org/data/deucsus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.