IDEAS home Printed from
   My bibliography  Save this paper

Technological Change in Renewable Resource Industries: An Alternative Estimation Approach


  • Kvamsdal, Sturla F.

    () (Dept. of Finance and Management Science, Norwegian School of Economics and Business Administration)


I set forth a generalized stochastic time trend approach, based upon the Kalman filter, as an alternative to the general index approach to measure technological change. Technology is treated as a latent variable in a state-space model of the production function. In data sparse settings, where panel data are unavailable, the method provides results which encompass insights from the general index approach, but provides more detailed estimates. I revisit an analysis of technological change in the Lofoten fishery. The estimated technology time profiles agree to some extent between the methods, but my more detailed results demand a new historical interpretation.

Suggested Citation

  • Kvamsdal, Sturla F., 2012. "Technological Change in Renewable Resource Industries: An Alternative Estimation Approach," Discussion Papers 2012/14, Norwegian School of Economics, Department of Business and Management Science.
  • Handle: RePEc:hhs:nhhfms:2012_014

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. James Kirkley & Catherine Morrison Paul & Stephen Cunningham & Joseph Catanzano, 2004. "Embodied and Disembodied Technical Change in Fisheries: An Analysis of the Sète Trawl Fishery, 1985–1999," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 29(2), pages 191-217, October.
    2. Fox, Kevin J. & Grafton, R. Quentin & Kirkley, James & Squires, Dale, 2003. "Property rights in a fishery: regulatory change and firm performance," Journal of Environmental Economics and Management, Elsevier, vol. 46(1), pages 156-177, July.
    3. Jin, Di & Thunberg, Eric & Kite-Powell, Hauke & Blake, Kevin, 2002. "Total Factor Productivity Change in the New England Groundfish Fishery: 1964-1993," Journal of Environmental Economics and Management, Elsevier, vol. 44(3), pages 540-556, November.
    4. Genaro Sucarrat, 2010. "Econometric reduction theory and philosophy," Journal of Economic Methodology, Taylor & Francis Journals, vol. 17(1), pages 53-75.
    5. Hendry, David F., 1995. "Dynamic Econometrics," OUP Catalogue, Oxford University Press, number 9780198283164.
    6. Dale Squires, 1992. "Productivity Measurement in Common Property Resource Industries: An Application to the Pacific Coast Trawl Fishery," RAND Journal of Economics, The RAND Corporation, vol. 23(2), pages 221-236, Summer.
    7. Hannesson, Rognvaldur, 2007. "Growth accounting in a fishery," Journal of Environmental Economics and Management, Elsevier, vol. 53(3), pages 364-376, May.
    8. Streibel, Mariane & Harvey, Andrew, 1993. "Estimation of simultaneous equation models with stochastic trend components," Journal of Economic Dynamics and Control, Elsevier, vol. 17(1-2), pages 263-287.
    9. Slade, Margaret E., 1989. "Modelling stochastic and cyclical components of technical change : An application of the Kalman filter," Journal of Econometrics, Elsevier, vol. 41(3), pages 363-383, July.
    10. Dale Squires & Niels Vestergaard, 2013. "Technical Change and The Commons," The Review of Economics and Statistics, MIT Press, vol. 95(5), pages 1769-1787, December.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Renewable Resource Industries; Kalman Filter; Technological Change;

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • Q22 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Fishery

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hhs:nhhfms:2012_014. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Stein Fossen). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.