IDEAS home Printed from https://ideas.repec.org/p/cdl/itsrrp/qt6j93p90t.html
   My bibliography  Save this paper

Freeway Performance Measurement System (PeMS)

Author

Listed:
  • Chen, Chao

Abstract

The freeway Performance Measurement System (PeMS) collects real time traffic data from sensors and generates performance measures of vehicle miles traveled, hours traveled, and travel time. This project is sponsored by the California Department of Transportation (Caltrans). PeMS provides tools and reports for traffic planners, operators, and engineers. It has a Web interface. Growing traffic demand in metropolitan areas has far outpaced increases in freeway lane-miles in the United States. The solution to congestion lies in increasing the efficiency of existing infrastructure. Performance measurement is the first step in effective management and operation of any system. Currently, the freeway system is not managed scientifically. Planning and operating decisions are made without accurate knowledge of the performance of each part of the system. PeMS collects data from automatic sensors that are already installed on most of California freeways. Its large database of real time and historical data 2 allows us to accurately measure the performance of freeways and its trends. Traffic planners need this information to allocate the available resources to improve mobility. PeMS computes performance measures and other traffic quantities from sensor data. Among them are speed, vehicle-hours of delay, vehicle-miles traveled, and travel time statistics. These values can be visualized in plots and summarized in reports, and they are available online through a Web interface. Policy makers can use PeMS to evaluate the effect of their decisions and set performance targets, planners monitor trends in congestion and respond with congestion-reduction measures, engineers view detailed data to improve conditions at specific locations, and travelers use the information to make more informed decisions. Researchers use PeMS's database to analyze traffic behavior on a large scale. We present some results from studies on freeway capacity, travel time variability, and the impact of incident on overall delay. In these cases, using observations from a large number of locations and times allows us to characterize traffic flow statistically. PeMS processes raw data into useful forms. It computes speed from single loop detectors, predict travel time from real time and historical data, and detect and fix data errors. We describe these data processing algorithms, which are based on empirical models and fitted to historical data.

Suggested Citation

  • Chen, Chao, 2003. "Freeway Performance Measurement System (PeMS)," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6j93p90t, Institute of Transportation Studies, UC Berkeley.
  • Handle: RePEc:cdl:itsrrp:qt6j93p90t
    as

    Download full text from publisher

    File URL: http://www.escholarship.org/uc/item/6j93p90t.pdf;origin=repeccitec
    Download Restriction: no

    References listed on IDEAS

    as
    1. Cassidy, Michael J. & Bertini, Robert L., 1999. "Some traffic features at freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 33(1), pages 25-42, February.
    2. Dailey, D. J., 1999. "A statistical algorithm for estimating speed from single loop volume and occupancy measurements," Transportation Research Part B: Methodological, Elsevier, vol. 33(5), pages 313-322, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Steven Sexton, 2012. "Paying for Pollution? How General Equilibrium Effects Undermine the “Spare the Air” Program," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 53(4), pages 553-575, December.
    2. Sexton, Steven E., 2010. "Rationing Public Goods by Cooperation or Pecuniary Incentives: Evidence from the Spare-the-Air Program," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt5xs9r6t8, Department of Agricultural & Resource Economics, UC Berkeley.
    3. repec:gam:jeners:v:10:y:2017:i:11:p:1796-:d:118059 is not listed on IDEAS
    4. Sumalee, A. & Zhong, R.X. & Pan, T.L. & Szeto, W.Y., 2011. "Stochastic cell transmission model (SCTM): A stochastic dynamic traffic model for traffic state surveillance and assignment," Transportation Research Part B: Methodological, Elsevier, vol. 45(3), pages 507-533, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cdl:itsrrp:qt6j93p90t. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Lisa Schiff). General contact details of provider: http://edirc.repec.org/data/itucbus.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.