IDEAS home Printed from https://ideas.repec.org/p/cam/camdae/1878.html
   My bibliography  Save this paper

Estimation of a Multiplicative Correlation Structure in the Large Dimensional Case

Author

Listed:
  • Hafner, C.
  • Linton, O.
  • Tang, H.

Abstract

We propose a Kronecker product model for correlation or covariance matrices in the large dimension case. The number of parameters of the model increases logarithmically with the dimension of the matrix. We propose a minimum distance (MD) estimator based on a log-linear property of the model, as well as a one-step estimator, which is a one-step approximation to the quasi-maximum likelihood estimator (QMLE).We establish the rate of convergence and a central limit theorem (CLT) for our estimators in the large dimensional case. A specification test and tools for Kronecker product model selection and inference are provided. In an Monte Carlo study where a Kronecker product model is correctly specified, our estimators exhibit superior performance. In an empirical application to portfolio choice for S&P500 daily returns, we demonstrate that certain Kronecker product models are good approximations to the general covariance matrix.

Suggested Citation

  • Hafner, C. & Linton, O. & Tang, H., 2018. "Estimation of a Multiplicative Correlation Structure in the Large Dimensional Case," Cambridge Working Papers in Economics 1878, Faculty of Economics, University of Cambridge.
  • Handle: RePEc:cam:camdae:1878
    Note: obl20
    as

    Download full text from publisher

    File URL: http://www.econ.cam.ac.uk/research-files/repec/cam/pdf/cwpe1878.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Jianqing Fan & Yuan Liao & Martina Mincheva, 2013. "Large covariance estimation by thresholding principal orthogonal complements," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 75(4), pages 603-680, September.
    3. Engle, Robert F. & Kroner, Kenneth F., 1995. "Multivariate Simultaneous Generalized ARCH," Econometric Theory, Cambridge University Press, vol. 11(1), pages 122-150, February.
    4. Weide, R. van der, 2002. "Generalized Orthogonal GARCH. A Multivariate GARCH model," CeNDEF Working Papers 02-02, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    5. Andersen, Torben G & Sorensen, Bent E, 1996. "GMM Estimation of a Stochastic Volatility Model: A Monte Carlo Study," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 328-352, July.
    6. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    7. Louis K.C. Chan & Jason Karceski & Josef Lakonishok, 1999. "On Portfolio Optimization: Forecasting Covariances and Choosing the Risk Model," NBER Working Papers 7039, National Bureau of Economic Research, Inc.
    8. Yin, Jianxin & Li, Hongzhe, 2012. "Model selection and estimation in the matrix normal graphical model," Journal of Multivariate Analysis, Elsevier, vol. 107(C), pages 119-140.
    9. Magnus, Jan R. & Neudecker, H., 1986. "Symmetry, 0-1 Matrices and Jacobians: A Review," Econometric Theory, Cambridge University Press, vol. 2(2), pages 157-190, August.
    10. Alexei Onatski, 2009. "Testing Hypotheses About the Number of Factors in Large Factor Models," Econometrica, Econometric Society, vol. 77(5), pages 1447-1479, September.
    11. Chang, Jinyuan & Qiu, Yumou & Yao, Qiwei & Zou, Tao, 2018. "Confidence regions for entries of a large precision matrix," Journal of Econometrics, Elsevier, vol. 206(1), pages 57-82.
    12. Robert F. Engle & Kevin Sheppard, 2001. "Theoretical and Empirical properties of Dynamic Conditional Correlation Multivariate GARCH," NBER Working Papers 8554, National Bureau of Economic Research, Inc.
    13. Peter C. B. Phillips & Hyungsik R. Moon, 1999. "Linear Regression Limit Theory for Nonstationary Panel Data," Econometrica, Econometric Society, vol. 67(5), pages 1057-1112, September.
    14. Ledoit, Olivier & Wolf, Michael, 2003. "Improved estimation of the covariance matrix of stock returns with an application to portfolio selection," Journal of Empirical Finance, Elsevier, vol. 10(5), pages 603-621, December.
    15. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    16. He, Xuming & Shao, Qi-Man, 2000. "On Parameters of Increasing Dimensions," Journal of Multivariate Analysis, Elsevier, vol. 73(1), pages 120-135, April.
    17. Chang, Jinyuan & Qiu, Yumou & Yao, Qiwei & Zou, Tao, 2018. "Confidence regions for entries of a large precision matrix," LSE Research Online Documents on Economics 87513, London School of Economics and Political Science, LSE Library.
    18. Alexander Volfovsky & Peter D. Hoff, 2015. "Testing for Nodal Dependence in Relational Data Matrices," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1037-1046, September.
    19. Chenlei Leng & Cheng Yong Tang, 2012. "Sparse Matrix Graphical Models," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(499), pages 1187-1200, September.
    20. Ohlson, Martin & Rauf Ahmad, M. & von Rosen, Dietrich, 2013. "The multilinear normal distribution: Introduction and some basic properties," Journal of Multivariate Analysis, Elsevier, vol. 113(C), pages 37-47.
    21. Johnstone, I. M & Onatski, A., 2018. "Testing in High-Dimensional Spiked Models," Cambridge Working Papers in Economics 1806, Faculty of Economics, University of Cambridge.
    22. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    23. Ledoit, Olivier & Wolf, Michael, 2015. "Spectrum estimation: A unified framework for covariance matrix estimation and PCA in large dimensions," Journal of Multivariate Analysis, Elsevier, vol. 139(C), pages 360-384.
    24. M. Browne & A. Shapiro, 1991. "Invariance of covariance structures under groups of transformations," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 38(1), pages 345-355, December.
    25. Lewis, Richard & Reinsel, Gregory C., 1985. "Prediction of multivariate time series by autoregressive model fitting," Journal of Multivariate Analysis, Elsevier, vol. 16(3), pages 393-411, June.
    26. Engle, Robert, 2002. "Dynamic Conditional Correlation: A Simple Class of Multivariate Generalized Autoregressive Conditional Heteroskedasticity Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(3), pages 339-350, July.
    27. Yang Ning & Han Liu, 2013. "High-dimensional semiparametric bigraphical models," Biometrika, Biometrika Trust, vol. 100(3), pages 655-670.
    28. Bai, Z. D. & Wu, Y., 1994. "Limiting Behavior of M-Estimators of Regression Coefficients in High Dimensional Linear Models I. Scale Dependent Case," Journal of Multivariate Analysis, Elsevier, vol. 51(2), pages 211-239, November.
    29. Roy van der Weide, 2002. "GO-GARCH: a multivariate generalized orthogonal GARCH model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(5), pages 549-564.
    30. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    31. Saikkonen, Pentti & Lütkepohl, HELMUT, 1996. "Infinite-Order Cointegrated Vector Autoregressive Processes," Econometric Theory, Cambridge University Press, vol. 12(5), pages 814-844, December.
    32. Chan, Louis K C & Karceski, Jason & Lakonishok, Josef, 1999. "On Portfolio Optimization: Forecasting Covariances and Choosing the Risk Model," The Review of Financial Studies, Society for Financial Studies, vol. 12(5), pages 937-974.
    33. Gerard, David & Hoff, Peter, 2015. "Equivariant minimax dominators of the MLE in the array normal model," Journal of Multivariate Analysis, Elsevier, vol. 137(C), pages 32-49.
    34. Park, Sujin & Hong, Seok Young & Linton, Oliver, 2016. "Estimating the quadratic covariation matrix for asynchronously observed high frequency stock returns corrupted by additive measurement error," Journal of Econometrics, Elsevier, vol. 191(2), pages 325-347.
    35. Fan, Jianqing & Fan, Yingying & Lv, Jinchi, 2008. "High dimensional covariance matrix estimation using a factor model," Journal of Econometrics, Elsevier, vol. 147(1), pages 186-197, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Golosnoy, Vasyl & Gribisch, Bastian, 2022. "Modeling and forecasting realized portfolio weights," Journal of Banking & Finance, Elsevier, vol. 138(C).
    2. Chen, Xin & Yang, Dan & Xu, Yan & Xia, Yin & Wang, Dong & Shen, Haipeng, 2023. "Testing and support recovery of correlation structures for matrix-valued observations with an application to stock market data," Journal of Econometrics, Elsevier, vol. 232(2), pages 544-564.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. HAFNER, Christian & LINTON, Oliver B. & TANG, Haihan, 2016. "Estimation of a Multiplicative Covariance Structure in the Large Dimensional Case," LIDAM Discussion Papers CORE 2016044, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Christian M. Hafner & Oliver Linton & Haihan Tang, 2016. "Estimation of a multiplicative covariance structure in the large dimensional case," CeMMAP working papers 52/16, Institute for Fiscal Studies.
    3. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    4. Linton, O. & Tang, H., 2020. "Estimation of the Kronecker Covariance Model by Quadratic Form," Cambridge Working Papers in Economics 2050, Faculty of Economics, University of Cambridge.
    5. Santos, André A.P. & Moura, Guilherme V., 2014. "Dynamic factor multivariate GARCH model," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 606-617.
    6. Christian M. Hafner & Oliver Linton & Haihan Tang, 2016. "Estimation of a Multiplicative Covariance Structure," CeMMAP working papers CWP23/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    7. Christian M. Hafner & Oliver Linton & Haihan Tang, 2016. "Estimation of a Multiplicative Covariance Structure," CeMMAP working papers 23/16, Institute for Fiscal Studies.
    8. João Caldeira & Guilherme Moura & André A.P. Santos, 2012. "Portfolio optimization using a parsimonious multivariate GARCH model: application to the Brazilian stock market," Economics Bulletin, AccessEcon, vol. 32(3), pages 1848-1857.
    9. Caldeira, João F & Moura, Guilherme Valle & Santos, André Alves Portela, 2013. "Seleção de carteiras utilizando o modelo Fama-French-Carhart," Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 67(1), April.
    10. Massimiliano Caporin & Michael McAleer, 2011. "Ranking Multivariate GARCH Models by Problem Dimension: An Empirical Evaluation," Working Papers in Economics 11/23, University of Canterbury, Department of Economics and Finance.
    11. Kwangmin Jung & Donggyu Kim & Seunghyeon Yu, 2021. "Next Generation Models for Portfolio Risk Management: An Approach Using Financial Big Data," Papers 2102.12783, arXiv.org, revised Feb 2022.
    12. Caporin, Massimiliano & McAleer, Michael, 2014. "Robust ranking of multivariate GARCH models by problem dimension," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 172-185.
    13. Paolella, Marc S. & Polak, Paweł & Walker, Patrick S., 2021. "A non-elliptical orthogonal GARCH model for portfolio selection under transaction costs," Journal of Banking & Finance, Elsevier, vol. 125(C).
    14. Hafner, Christian M. & Reznikova, Olga, 2012. "On the estimation of dynamic conditional correlation models," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3533-3545.
    15. repec:fgv:epgrbe:v:67:n:1:a:3 is not listed on IDEAS
    16. Morana, Claudio, 2019. "Regularized semiparametric estimation of high dimensional dynamic conditional covariance matrices," Econometrics and Statistics, Elsevier, vol. 12(C), pages 42-65.
    17. Johannes Bock, 2018. "An updated review of (sub-)optimal diversification models," Papers 1811.08255, arXiv.org.
    18. Kasper Johansson & Mehmet Giray Ogut & Markus Pelger & Thomas Schmelzer & Stephen Boyd, 2023. "A Simple Method for Predicting Covariance Matrices of Financial Returns," Papers 2305.19484, arXiv.org, revised Nov 2023.
    19. Fotis Papailias & Dimitrios Thomakos, 2015. "Covariance averaging for improved estimation and portfolio allocation," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 29(1), pages 31-59, February.
    20. Nikolaus Hautsch & Lada M. Kyj & Peter Malec, 2015. "Do High‐Frequency Data Improve High‐Dimensional Portfolio Allocations?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 263-290, March.
    21. Noureldin, Diaa & Shephard, Neil & Sheppard, Kevin, 2014. "Multivariate rotated ARCH models," Journal of Econometrics, Elsevier, vol. 179(1), pages 16-30.

    More about this item

    Keywords

    Correlation matrix; Kronecker product; Matrix logarithm; Multiway; array data; Portfolio choice; Sparsity;
    All these keywords.

    JEL classification:

    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cam:camdae:1878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jake Dyer (email available below). General contact details of provider: https://www.econ.cam.ac.uk/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.