IDEAS home Printed from https://ideas.repec.org/p/cam/camdae/0207.html
   My bibliography  Save this paper

Strategy Learning in 3x3 Games by Neural Networks

Author

Listed:
  • D. Sgroi
  • D. J. Zizzo

Abstract

This paper presents a neural network based methodology for examining the learning of game-playing rules in never-before seen games. A network is trained to pick Nash equilibria in a set of games and then released to play a larger set of new games. While faultlessly selecting Nash equilibria in never-before seen games is too complex a task for the network, Nash equilibria are chosen approximately 60% of the times. Furthermore, despite training the network to select Nash equilibria, what emerges are endogenously obtained bounded-rational rules which are closer to payoff dominance, and the best response to payoff dominance.

Suggested Citation

  • D. Sgroi & D. J. Zizzo, 2002. "Strategy Learning in 3x3 Games by Neural Networks," Cambridge Working Papers in Economics 0207, Faculty of Economics, University of Cambridge.
  • Handle: RePEc:cam:camdae:0207
    Note: EMT
    as

    Download full text from publisher

    File URL: http://www.econ.cam.ac.uk/research-files/repec/cam/pdf/wp0207.pdf
    Download Restriction: no

    References listed on IDEAS

    as
    1. Stahl, Dale II & Wilson, Paul W., 1994. "Experimental evidence on players' models of other players," Journal of Economic Behavior & Organization, Elsevier, vol. 25(3), pages 309-327, December.
    2. Stahl Dale O. & Wilson Paul W., 1995. "On Players' Models of Other Players: Theory and Experimental Evidence," Games and Economic Behavior, Elsevier, vol. 10(1), pages 218-254, July.
    3. Costa-Gomes, Miguel & Crawford, Vincent P & Broseta, Bruno, 2001. "Cognition and Behavior in Normal-Form Games: An Experimental Study," Econometrica, Econometric Society, vol. 69(5), pages 1193-1235, September.
    4. Ben-porath, Elchanan, 1990. "The complexity of computing a best response automaton in repeated games with mixed strategies," Games and Economic Behavior, Elsevier, vol. 2(1), pages 1-12, March.
    5. Gilboa, Itzhak, 1988. "The complexity of computing best-response automata in repeated games," Journal of Economic Theory, Elsevier, vol. 45(2), pages 342-352, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sgroi, Daniel & Zizzo, Daniel John, 2009. "Learning to play 3×3 games: Neural networks as bounded-rational players," Journal of Economic Behavior & Organization, Elsevier, vol. 69(1), pages 27-38, January.
    2. Leonidas Spiliopoulos, 2005. "Can the human mind learn to backward induce? A neural network answer," Game Theory and Information 0505008, EconWPA.
    3. Spiliopoulos, Leonidas, 2009. "Neural networks as a learning paradigm for general normal form games," MPRA Paper 16765, University Library of Munich, Germany.
    4. Fabrizio Germano, 2007. "Stochastic Evolution of Rules for Playing Finite Normal Form Games," Theory and Decision, Springer, vol. 62(4), pages 311-333, May.

    More about this item

    Keywords

    rationality; learning; neural networks; normal form games; complexity;

    JEL classification:

    • C72 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Noncooperative Games
    • D00 - Microeconomics - - General - - - General
    • D83 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Search; Learning; Information and Knowledge; Communication; Belief; Unawareness

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cam:camdae:0207. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Jake Dyer). General contact details of provider: http://www.econ.cam.ac.uk/ .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.