IDEAS home Printed from https://ideas.repec.org/p/bie/wpaper/390.html
   My bibliography  Save this paper

Optimal Stopping under Ambiguity

Author

Listed:
  • Riedel, Frank

    (Center for Mathematical Economics, Bielefeld University)

Abstract

We consider optimal stopping problems for ambiguity averse decision makers with multiple priors. In general, backward induction fails. If, however, the class of priors is time-consistent, we establish a generalization of the classical theory of optimal stopping. To this end, we develop first steps of a martingale theory for multiple priors. We define minimax (super)martingales, provide a Doob-Meyer decomposition, and characterize minimax martingales. This allows us to extend the standard backward induction procedure to ambiguous, time-consistent preferences. The value function is the smallest process that is a minimax supermartingale and dominates the payoff process. It is optimal to stop when the current payoff is equal to the value function. Moving on, we study the infinite horizon case. We show that the value process satisfies the same backward recursion (Bellman equation) as in the finite horizon case. The finite horizon solutions converge to the infinite horizon solution. Finally, we characterize completely the set of time-consistent multiple priors in the binomial tree. We solve two classes of examples: the so-called independent and indistinguishable case (the parking problem) and the case of American Options (Cox-Ross-Rubinstein model).

Suggested Citation

  • Riedel, Frank, 2010. "Optimal Stopping under Ambiguity," Center for Mathematical Economics Working Papers 390, Center for Mathematical Economics, Bielefeld University.
  • Handle: RePEc:bie:wpaper:390
    as

    Download full text from publisher

    File URL: https://pub.uni-bielefeld.de/download/1944648/2319760
    File Function: First Version, 2007
    Download Restriction: no

    References listed on IDEAS

    as
    1. Riedel, Frank, 2004. "Dynamic coherent risk measures," Stochastic Processes and their Applications, Elsevier, vol. 112(2), pages 185-200, August.
    2. Alain Chateauneuf & Fabio Maccheroni & Massimo Marinacci & Jean-Marc Tallon, 2005. "Monotone continuous multiple priors," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 26(4), pages 973-982, November.
    3. Eichberger, Jurgen & Kelsey, David, 1996. "Uncertainty Aversion and Dynamic Consistency," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 37(3), pages 625-640, August.
    4. Epstein, Larry G. & Schneider, Martin, 2003. "Recursive multiple-priors," Journal of Economic Theory, Elsevier, vol. 113(1), pages 1-31, November.
    5. H. Föllmer & Y.M. Kabanov, 1997. "Optional decomposition and Lagrange multipliers," Finance and Stochastics, Springer, vol. 2(1), pages 69-81.
    6. Gilboa, Itzhak & Schmeidler, David, 1989. "Maxmin expected utility with non-unique prior," Journal of Mathematical Economics, Elsevier, vol. 18(2), pages 141-153, April.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Keywords

    Optimal stopping; Uncertainty aversion; Ambiguity;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bie:wpaper:390. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Bettina Weingarten). General contact details of provider: http://edirc.repec.org/data/imbiede.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.