IDEAS home Printed from https://ideas.repec.org/p/bge/wpaper/708.html
   My bibliography  Save this paper

Weighted Euclidean Biplots

Author

Listed:
  • Michael Greenacre
  • Patrick J.F. Groenen

Abstract

We construct a weighted Euclidean distance that approximates any distance or dissimilarity measure between individuals that is based on a rectangular cases-by-variables data matrix. In contrast to regular multidimensional scaling methods for dissimilarity data, the method leads to biplots of individuals and variables while preserving all the good properties of dimension-reduction methods that are based on the singular-value decomposition. The main benefits are the decomposition of variance into components along principal axes, which provide the numerical diagnostics known as contributions, and the estimation of nonnegative weights for each variable. The idea is inspired by the distance functions used in correspondence analysis and in principal component analysis of standardized data, where the normalizations inherent in the distances can be considered as differential weighting of the variables. In weighted Euclidean biplots we allow these weights to be unknown parameters, which are estimated from the data to maximize the fit to the chosen distances or dissimilarities. These weights are estimated using a majorization algorithm. Once this extra weight-estimation step is accomplished, the procedure follows the classical path in decomposing the matrix and displaying its rows and columns in biplots.

Suggested Citation

  • Michael Greenacre & Patrick J.F. Groenen, 2013. "Weighted Euclidean Biplots," Working Papers 708, Barcelona Graduate School of Economics.
  • Handle: RePEc:bge:wpaper:708
    as

    Download full text from publisher

    File URL: http://www.barcelonagse.eu/sites/default/files/working_paper_pdfs/708.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Michael Greenacre, 2009. "Contribution biplots," Economics Working Papers 1162, Department of Economics and Business, Universitat Pompeu Fabra, revised Jan 2011.
    2. Michael Greenacre, 2008. "Correspondence analysis of raw data," Economics Working Papers 1112, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2009.
    3. J. Gower & P. Legendre, 1986. "Metric and Euclidean properties of dissimilarity coefficients," Journal of Classification, Springer;The Classification Society, vol. 3(1), pages 5-48, March.
    4. Greenacre Michael, 2010. "Biplots in Practice," Books, Fundacion BBVA / BBVA Foundation, number 2011113, December.
    5. de Leeuw, Jan & Mair, Patrick, 2009. "Multidimensional Scaling Using Majorization: SMACOF in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 31(i03).
    6. Jan Leeuw, 1988. "Convergence of the majorization method for multidimensional scaling," Journal of Classification, Springer;The Classification Society, vol. 5(2), pages 163-180, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giuseppe Bove & Akinori Okada, 2018. "Methods for the analysis of asymmetric pairwise relationships," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(1), pages 5-31, March.
    2. Fry, J.T. & Slifko, Matt & Leman, Scotland, 2018. "Generalized biplots for stress-based multidimensionally scaled projections," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 340-353.
    3. Federico Gobbo, 2017. "Beyond the Nation-State? The Ideology of the Esperanto Movement between Neutralism and Multilingualism," Social Inclusion, Cogitatio Press, vol. 5(4), pages 38-47.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Greenacre, 2012. "Fuzzy coding in constrained ordinations," Economics Working Papers 1325, Department of Economics and Business, Universitat Pompeu Fabra.
    2. Michael Greenacre, 2014. "Size and shape in the measurement of multivariate proximity," Economics Working Papers 1444, Department of Economics and Business, Universitat Pompeu Fabra.
    3. Michael Greenacre, 2011. "The contributions of rare objects in correspondence analysis," Economics Working Papers 1278, Department of Economics and Business, Universitat Pompeu Fabra.
    4. Michael Greenacre, 2004. "Weighted metric multidimensional scaling," Economics Working Papers 777, Department of Economics and Business, Universitat Pompeu Fabra.
    5. Gruenhage, Gina & Opper, Manfred & Barthelme, Simon, 2016. "Visualizing the effects of a changing distance on data using continuous embeddings," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 51-65.
    6. Eric Beh & Luigi D’Ambra, 2009. "Some Interpretative Tools for Non-Symmetrical Correspondence Analysis," Journal of Classification, Springer;The Classification Society, vol. 26(1), pages 55-76, April.
    7. Pilar García Gómez & Ángel López Nicolás, 2005. "Socio-economic inequalities in health in Catalonia," Hacienda Pública Española / Review of Public Economics, IEF, vol. 175(4), pages 103-121, december.
    8. Michael Greenacre, 2011. "A Simple Permutation Test for Clusteredness," Working Papers 555, Barcelona Graduate School of Economics.
    9. David Bholat & Stephen Hans & Pedro Santos & Cheryl Schonhardt-Bailey, 2015. "Text mining for central banks," Handbooks, Centre for Central Banking Studies, Bank of England, number 33, March.
    10. Patrick Groenen & Rudolf Mathar & Willem Heiser, 1995. "The majorization approach to multidimensional scaling for Minkowski distances," Journal of Classification, Springer;The Classification Society, vol. 12(1), pages 3-19, March.
    11. la Grange, Anthony & le Roux, Niël & Gardner-Lubbe, Sugnet, 2009. "BiplotGUI: Interactive Biplots in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 30(i12).
    12. Hanafi, Mohamed & Kiers, Henk A.L., 2006. "Analysis of K sets of data, with differential emphasis on agreement between and within sets," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1491-1508, December.
    13. Rémi Bazillier & Nicolas Sirven, 2006. "Les normes fondamentales du travail contribuent-elles à réduire les inégalités ?," Revue Française d'Économie, Programme National Persée, vol. 21(2), pages 111-146.
    14. Michael Brusco & J Dennis Cradit & Douglas Steinley, 2021. "A comparison of 71 binary similarity coefficients: The effect of base rates," PLOS ONE, Public Library of Science, vol. 16(4), pages 1-19, April.
    15. Alfonso Gambardella & Walter Garcia Fontes, 1996. "European research funding and regional technological capabilities: Network composition analysis," Economics Working Papers 174, Department of Economics and Business, Universitat Pompeu Fabra.
    16. Balepur, Prashant Narayan, 1998. "Impacts of Computer-Mediated Communication on Travel and Communication Patterns: The Davis Community Network Study," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6cb1f85c, Institute of Transportation Studies, UC Berkeley.
    17. Niemann, Helen & Moehrle, Martin G. & Frischkorn, Jonas, 2017. "Use of a new patent text-mining and visualization method for identifying patenting patterns over time: Concept, method and test application," Technological Forecasting and Social Change, Elsevier, vol. 115(C), pages 210-220.
    18. Paul Green & Jonathan Kim & Frank Carmone, 1990. "A preliminary study of optimal variable weighting in k-means clustering," Journal of Classification, Springer;The Classification Society, vol. 7(2), pages 271-285, September.
    19. Funk, Patrick & Davis, Alex & Vaishnav, Parth & Dewitt, Barry & Fuchs, Erica, 2020. "Individual inconsistency and aggregate rationality: Overcoming inconsistencies in expert judgment at the technical frontier," Technological Forecasting and Social Change, Elsevier, vol. 155(C).
    20. Douglas L. Steinley & M. J. Brusco, 2019. "Using an Iterative Reallocation Partitioning Algorithm to Verify Test Multidimensionality," Journal of Classification, Springer;The Classification Society, vol. 36(3), pages 397-413, October.

    More about this item

    Keywords

    Biplot; correspondence analysis; Distance; majorization; multidimensional scaling; singular-value decomposition; weighted least squares;
    All these keywords.

    JEL classification:

    • C19 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Other
    • C88 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Other Computer Software

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bge:wpaper:708. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/bargses.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bruno Guallar (email available below). General contact details of provider: https://edirc.repec.org/data/bargses.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.