IDEAS home Printed from https://ideas.repec.org/a/spr/jclass/v5y1988i2p163-180.html
   My bibliography  Save this article

Convergence of the majorization method for multidimensional scaling

Author

Listed:
  • Jan Leeuw

Abstract

No abstract is available for this item.

Suggested Citation

  • Jan Leeuw, 1988. "Convergence of the majorization method for multidimensional scaling," Journal of Classification, Springer;The Classification Society, vol. 5(2), pages 163-180, September.
  • Handle: RePEc:spr:jclass:v:5:y:1988:i:2:p:163-180
    DOI: 10.1007/BF01897162
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF01897162
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF01897162?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Louis Guttman, 1968. "A general nonmetric technique for finding the smallest coordinate space for a configuration of points," Psychometrika, Springer;The Psychometric Society, vol. 33(4), pages 469-506, December.
    2. J. Kruskal, 1971. "Monotone regression: Continuity and differentiability properties," Psychometrika, Springer;The Psychometric Society, vol. 36(1), pages 57-62, March.
    3. J. Kruskal, 1964. "Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis," Psychometrika, Springer;The Psychometric Society, vol. 29(1), pages 1-27, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Groenen, P.J.F. & van de Velden, M., 2004. "Multidimensional scaling," Econometric Institute Research Papers EI 2004-15, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Robert Schneider, 1992. "A uniform approach to multidimensional scaling," Journal of Classification, Springer;The Classification Society, vol. 9(2), pages 257-273, December.
    3. Patrick Groenen & Rudolf Mathar & Willem Heiser, 1995. "The majorization approach to multidimensional scaling for Minkowski distances," Journal of Classification, Springer;The Classification Society, vol. 12(1), pages 3-19, March.
    4. Michael J. Greenacre & Patrick J. F. Groenen, 2016. "Weighted Euclidean Biplots," Journal of Classification, Springer;The Classification Society, vol. 33(3), pages 442-459, October.
    5. Lawrence Hubert & Phipps Arabie & Matthew Hesson-Mcinnis, 1992. "Multidimensional scaling in the city-block metric: A combinatorial approach," Journal of Classification, Springer;The Classification Society, vol. 9(2), pages 211-236, December.
    6. Kiers, Henk A. L., 2002. "Setting up alternating least squares and iterative majorization algorithms for solving various matrix optimization problems," Computational Statistics & Data Analysis, Elsevier, vol. 41(1), pages 157-170, November.
    7. Hanafi, Mohamed & Kiers, Henk A.L., 2006. "Analysis of K sets of data, with differential emphasis on agreement between and within sets," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1491-1508, December.
    8. Gruenhage, Gina & Opper, Manfred & Barthelme, Simon, 2016. "Visualizing the effects of a changing distance on data using continuous embeddings," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 51-65.
    9. Kagie, M. & van Wezel, M.C. & Groenen, P.J.F., 2007. "A graphical shopping interface bases on product attributes," Econometric Institute Research Papers EI 2007-02, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    10. Leung, Pui Lam & Lau, Kin-nam, 2004. "Estimating the city-block two-dimensional scaling model with simulated annealing," European Journal of Operational Research, Elsevier, vol. 158(2), pages 518-524, October.
    11. Husson, F. & Pages, J., 2006. "INDSCAL model: geometrical interpretation and methodology," Computational Statistics & Data Analysis, Elsevier, vol. 50(2), pages 358-378, January.
    12. de Leeuw, Jan & Mair, Patrick, 2009. "Multidimensional Scaling Using Majorization: SMACOF in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 31(i03).
    13. repec:jss:jstsof:31:i03 is not listed on IDEAS
    14. Wei Liu & Li Yang & Bo Yu, 2020. "A Lifting-Penalty Method for Quadratic Programming with a Quadratic Matrix Inequality Constraint," Mathematics, MDPI, vol. 8(2), pages 1-11, January.
    15. Linghao Zhang & Bo Pang & Haitao Tang & Hongjun Wang & Chongshou Li & Zhipeng Luo, 2022. "Pairwise Constraints Multidimensional Scaling for Discriminative Feature Learning," Mathematics, MDPI, vol. 10(21), pages 1-16, November.
    16. Simon J. L. Billinge & Phillip M. Duxbury & Douglas S. Gonçalves & Carlile Lavor & Antonio Mucherino, 2018. "Recent results on assigned and unassigned distance geometry with applications to protein molecules and nanostructures," Annals of Operations Research, Springer, vol. 271(1), pages 161-203, December.
    17. Kagie, M. & van Wezel, M.C. & Groenen, P.J.F., 2009. "Map Based Visualization of Product Catalogs," ERIM Report Series Research in Management ERS-2009-010-MKT, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    18. Groenen, P.J.F. & Borg, I., 2013. "The Past, Present, and Future of Multidimensional Scaling," Econometric Institute Research Papers EI 2013-07, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    19. Peter Verboon & Willem Heiser, 1992. "Resistant orthogonal procrustes analysis," Journal of Classification, Springer;The Classification Society, vol. 9(2), pages 237-256, December.
    20. van den Burg, G.J.J. & Groenen, P.J.F., 2014. "GenSVM: A Generalized Multiclass Support Vector Machine," Econometric Institute Research Papers EI 2014-33, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Willem Heiser, 1991. "A generalized majorization method for least souares multidimensional scaling of pseudodistances that may be negative," Psychometrika, Springer;The Psychometric Society, vol. 56(1), pages 7-27, March.
    2. Jan Leeuw, 1984. "Differentiability of Kruskal's stress at a local minimum," Psychometrika, Springer;The Psychometric Society, vol. 49(1), pages 111-113, March.
    3. Jerzy Grobelny & Rafal Michalski & Gerhard-Wilhelm Weber, 2021. "Modeling human thinking about similarities by neuromatrices in the perspective of fuzzy logic," WORking papers in Management Science (WORMS) WORMS/21/09, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
    4. Yoshio Takane & J. Carroll, 1981. "Nonmetric maximum likelihood multidimensional scaling from directional rankings of similarities," Psychometrika, Springer;The Psychometric Society, vol. 46(4), pages 389-405, December.
    5. J. Carroll, 1985. "Review," Psychometrika, Springer;The Psychometric Society, vol. 50(1), pages 133-140, March.
    6. Phipps Arabie, 1978. "Random versus rational strategies for initial configurations in nonmetric multidimensional scaling," Psychometrika, Springer;The Psychometric Society, vol. 43(1), pages 111-113, March.
    7. Henry Brady, 1985. "Statistical consistency and hypothesis testing for nonmetric multidimensional scaling," Psychometrika, Springer;The Psychometric Society, vol. 50(4), pages 509-537, December.
    8. Abe, Makoto, 1998. "Error structure and identification condition in maximum likelihood nonmetric multidimensional scaling," European Journal of Operational Research, Elsevier, vol. 111(2), pages 216-227, December.
    9. Jacqueline Meulman & Peter Verboon, 1993. "Points of view analysis revisited: Fitting multidimensional structures to optimal distance components with cluster restrictions on the variables," Psychometrika, Springer;The Psychometric Society, vol. 58(1), pages 7-35, March.
    10. Venera Tomaselli, 1996. "Multivariate statistical techniques and sociological research," Quality & Quantity: International Journal of Methodology, Springer, vol. 30(3), pages 253-276, August.
    11. Roderick McDonald, 1976. "A note on monotone polygons fitted to bivariate data," Psychometrika, Springer;The Psychometric Society, vol. 41(4), pages 543-546, December.
    12. Krzysztof Bartczak & Stanislaw Lobejko, 2021. "An Innovative Model for Measuring Attitudes towards Digital Technology Platforms," European Research Studies Journal, European Research Studies Journal, vol. 0(3B), pages 249-270.
    13. C Mar-Molinero & J Mingers, 2007. "An evaluation of the limitations of, and alternatives to, the Co-Plot methodology," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(7), pages 874-886, July.
    14. Nijkamp, P., 1980. "Soft econometric models : an analysis of regional income determinants," Serie Research Memoranda 0005, VU University Amsterdam, Faculty of Economics, Business Administration and Econometrics.
    15. Herden, Gerhard & Pallack, Andreas, 2005. "Adequateness and interpretability of objective functions in ordinal data analysis," Journal of Multivariate Analysis, Elsevier, vol. 94(1), pages 19-69, May.
    16. Ulf Lundberg & Gösta Ekman, 1973. "Subjective geographic distance: A multidimensional comparison," Psychometrika, Springer;The Psychometric Society, vol. 38(1), pages 113-122, March.
    17. Stanisław Łobejko & Krzysztof Bartczak, 2021. "The Role of Digital Technology Platforms in the Context of Changes in Consumption and Production Patterns," Sustainability, MDPI, vol. 13(15), pages 1-15, July.
    18. Gruenhage, Gina & Opper, Manfred & Barthelme, Simon, 2016. "Visualizing the effects of a changing distance on data using continuous embeddings," Computational Statistics & Data Analysis, Elsevier, vol. 104(C), pages 51-65.
    19. Akinori Okada & Tadashi Imaizumi, 1997. "Asymmetric multidimensional scaling of two-mode three-way proximities," Journal of Classification, Springer;The Classification Society, vol. 14(2), pages 195-224, September.
    20. Roger Shepard, 1974. "Representation of structure in similarity data: Problems and prospects," Psychometrika, Springer;The Psychometric Society, vol. 39(4), pages 373-421, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jclass:v:5:y:1988:i:2:p:163-180. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.